精英家教网 > 初中数学 > 题目详情

如图,二次函数y=ax2+bx+c的图象与x轴交于两个不同的点A(-2,0)、B(4,0),与y轴交于点C(0,3),连接BC、AC,该二次函数图象的对称轴与x轴相交于点D.
(1)求这个二次函数的解析式、点D的坐标及直线BC的函数解析式;
(2)点Q在线段BC上,使得以点Q、D、B为顶点的三角形与△ABC相似,求出点Q的坐标;
(3)在(2)的条件下,若存在点Q,请任选一个Q点求出△BDQ外接圆圆心的坐标.

解:(1)∵二次函数y=ax2+bx+c的图象与x轴交于两个不同的点A(-2,0)、B(4,0),与y轴交于点C(0,3),
∴设二次函数为y=a(x+2)(x-4),把点C(0,3)代入得,a(0+2)(0-4)=3,解得a=-
∴这个一次函数的解析式为:y=-x2+x+3;

(2)∵y=-x2+x+3=-(x-1)2+
∴抛物线的对称轴是直x=1,
∴点D的坐标为(1,0). 
设直线BC的解析式为;y=kx+b(k≠0),
,解得
∴直线BC的解析式为y=-x+3.
∵A(-2,0),B(4,0),C(0,3),D(1,0),
∴OD=1,BD=3,CO=3,BO=4,AB=6,
∴BC===5,
如图1,当∠QDB=∠CAB时,==,解得QB=
过点Q作QH⊥x轴于点H,
∵OC⊥x轴,
∴QH∥CO.
=.解得QH=
把y=代入y=-x+3,得x=2.
∴此时,点Q的坐标为(2,);
如图2,当∠DQB=∠CAB时,=,即=,得QB=
过点Q作QG⊥x轴于点G,
∵OC⊥x轴,
∴QG∥CO.
=.解得QH=
把y=代入y=-x+3,得x=
∴此时,点Q的坐标为().
综上所述,点Q坐标为(2,)或();

(3)当点Q的坐标为(2,)时,设圆心的M(,y).
∵MD=MQ,
∴(-1)2+y2=(-2)2+(y-2,解得y=
∴M().
分析:(1)设二次函数为y=a(x+2)(x-4),把点C(0,3)代入求出a的值即可得出二次函数的解析式;
(2)由(1)中抛物线的解析式求出对称轴方程,故可得出D点坐标,利用待定系数法求出直线BC的解析式,根据勾股定理求出BC的长,由于相似三角形的对应角不能确定,故应分∠QDB=∠CAB和∠DQB=∠CAB两种情况进行讨论;
(3)当点Q的坐标为(2,)时,设圆心的M(,y),根据MD=MQ即可求出y的值,故可得出结论.
点评:本题考查的是二次函数综合题,涉及到用待定系数法求二次函数及一次函数的解析式、抛物线的顶点坐标、相似三角形的性质等相关知识,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,二次函数的图象经过点D(0,
7
9
3
),且顶点C的横坐标为4,该图象在x轴上截得的线段AB的长为6.
(1)求二次函数的解析式;
(2)在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标;
(3)在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,二次函数图象的顶点为坐标原点O,且经过点A(3,3),一次函数的图象经过点A和点B(6,0).
(1)求二次函数与一次函数的解析式;
(2)如果一次函数图象与y相交于点C,点D在线段AC上,与y轴平行的直线DE与二次函数图象相交于点E,∠CDO=∠OED,求点D的坐标.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,二次函数y=ax2+bx+c的图象与x轴交于B、C两点,与y轴交于点A(0,-3),∠ABC=45°,∠ACB=60°,求这个二次函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,如图的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系).根据图象提供的信息,解答下列问题:
(1)求累积利润s(万元)与时间t(月)之间的函数关系式;
(2)求截止到几月末公司累积利润可达30万元;
(3)从第几个月起公司开始盈利?该月公司所获利润是多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,二次函数y=ax2+bx+c的图象与x轴相交于两个点,根据图象回答:(1)b
0(填“>”、“<”、“=”);
(2)当x满足
x<-4或x>2
x<-4或x>2
时,ax2+bx+c>0;
(3)当x满足
x<-1
x<-1
时,ax2+bx+c的值随x增大而减小.

查看答案和解析>>

同步练习册答案