精英家教网 > 初中数学 > 题目详情

在△ABC中,∠B=2∠C,AD是∠BAC的平分线.求证:AC=AB+BD.

解:在AC上截取AE=AB,连接DE,如图所示:

∵AD平分∠BAC,
∴∠EAD=∠BAD,
在△AED和△ABD中,

∴△AED≌△ABD(SAS),
∴ED=BD,∠AED=∠B,
∵∠B=2∠C,∴∠AED=2∠C,
又∠AED为△CED的外角,
∴∠AED=∠C+∠EDC,
∴∠C=∠EDC,
∴EC=ED,
∴EC=BD,
则AC=AE+EC=AB+BD.
分析:在AC上截取AE=AB,连接DE,由AD为角平分线,得到一对角相等,再由AD为公共边,利用SAS可得出三角形AED与三角形ABD全等,利用全等三角形的对应边相等可得ED=BD,由全等三角形的对应角相等可得∠AED=∠B,由∠B=2∠C,等量代换得到∠AED=2∠C,又∠AED为三角形ECD的外角,根据外角的性质得到∠AED等于两角之和,可得出∠C=∠EDC,根据等角对等边可得出EC=DE,等量代换得到EC=BD,由AC=AE+EC,等量代换可得证.
点评:此题考查了全等三角形的判定与性质,三角形的外角性质,以及等腰三角形的判定与性质,利用了等量代换的思想,其中全等三角形的判定方法为:SSS;SAS;ASA;AAS;HL(直角三角形判定全等的方法),常常利用三角形的全等来解决线段或角相等的问题,在证明三角形全等时,要注意公共角及公共边,对顶角相等等隐含条件的运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.
(1)CD与EF平行吗?为什么?
(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,∠C=90°,∠A=30°,以AB、AC为边向△ABC外作等边△ABD和等边△ACE.
精英家教网
(1)如图1.连接BE、CD,BE与CD交于点O,
①证明:DC=BE;
②∠BOC=
 
°. (直接填答案)
(2)如图2,连接DE,交AB于点F.DF与EF相等吗?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,在△ABC中,边AC的垂直平分线交BC于点D,交AC于点E、已知△ABC中与△ABD的周长分别为18cm和12cm,则线段AE的长等于
3
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,∠C=90°,BC=12,AB=13,则tanA的值是(  )
A、
5
12
B、
12
5
C、
12
13
D、
5
13

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,a=
2
,b=
6
,c=2
2
,则最大边上的中线长为(  )
A、
2
B、
3
C、2
D、以上都不对

查看答案和解析>>

同步练习册答案