精英家教网 > 初中数学 > 题目详情
如图,在△ABC和△DEF中,∠A=∠D,∠C=∠F,AC=DF,请说明AE=BD的理由.
分析:根据已知条件求证两三角形全等,明确全等三角形的判定方法,要结合已知图形,以及已知在图形上的位置进行思考.
解答:解:在△ABC和△DEF中,
∠A=∠D
AC=DF
∠C=∠F

∴△ABC≌△DEF(ASA),
∴AB=DE,
∴AB+BE=DE+BE,
∴AE=BD.
点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、已知,如图,在△ABC和△EDB中,∠ACB=∠EBD=90°,点E在BC上,DE⊥AB交AB于F,且AB=ED.求证:DB=BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC和△DEF中,AC∥DE,∠EFD与∠B互补,DE=mAC(m>1).试探索线段EF与AB的数量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC和△ABD中,∠C=∠D=90°,若利用“AAS”证明△ABC≌△ABD,则需要加条件
∠CAB=∠DAB或∠CBA=∠DBA
∠CAB=∠DAB或∠CBA=∠DBA
,若利用“HL”证明△ABC≌△ABD,则需要加条件
BD=BC或AD=AC
BD=BC或AD=AC

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC和△ABD中,AC⊥BC,AD⊥BD,E是AB边上的中点.则DE
=
=
CE.(填>、=、<)

查看答案和解析>>

同步练习册答案