精英家教网 > 初中数学 > 题目详情
(2007•白银)如图,已知等边△ABC和点P,设点P到△ABC三边AB、AC、BC(或其延长线)的距离分别为h1、h2、h3,△ABC的高为h.
在图(1)中,点P是边BC的中点,此时h3=0,可得结论:h1+h2+h3=h.
在图(2),(3),(4),(5)中,点P分别在线段MC上、MC延长线上、△ABC内、△ABC外.
(1)请探究:图(2),(3),(4),(5)中,h1、h2、h3、h之间的关系;(直接写出结论)图②-⑤中的关系依次是:
h1+h2+h3=h;h1-h2+h3=h;h1+h2+h3=h;h1+h2-h3=h;
(2)证明图(2)所得结论;
(3)证明图(4)所得结论;
(4)(附加题2分)在图(6)中,若四边形RBCS是等腰梯形,∠B=∠C=60°,RS=n,BC=m,点P在梯形内,且点P到四边BR、RS、SC、CB的距离分别是h1、h2、h3、h4,桥形的高为h,则h1、h2、h3、h4、h之间的关系为:h1+h3+h4=.图(4)与图(6)中的等式有何关系.

【答案】分析:(1)图②-⑤中的关系依次是:h1+h2+h3=h;h1-h2+h3=h;h1+h2+h3=h;h1+h2-h3=h;
(2)由图(2)有S△ABP+S△ACP=S△ABC根据等边三角形的性质,及面积公式得出结论;
(3)由图(4)有S△ABP+S△BCP+S△ACP=S△ABC,根据等边三角形的性质,及面积公式得出结论;
(4)延长BR、CS交于A,由(3)有h1+h3+h4=
解答:解:(1)图②-⑤中的关系依次是:
h1+h2+h3=h;h1-h2+h3=h;h1+h2+h3=h;h1+h2-h3=h;(4分)

(2)图②中,h1+h2+h3=h.
证法一:
∵h1=BPsin60°,h2=PCsin60°,h3=0,(6分)
∴h1+h2+h3=BPsin60°+PCsin60°
=BCsin60°
=ACsin60°
=h.(8分)
证法二:连接AP,则S△APB+S△APC=S△ABC.(6分)

又h3=0,AB=AC=BC,
∴h1+h2+h3=h;(8分)

证明:(3)图④中,h1+h2+h3=h.
过点P作RS∥BC与边AB、AC相交于R、S.(9分)在△ARS中,由图②中结论知:h1+h2+0=h-h3
∴h1+h2+h3=h.(10分)
说明:(2)与(3)问,通过作辅助线,利用证全等三角形的方法类似给分;

(4)由(3)可知:h1+h3+h4=.(11分)
让R、S延BR、CS延长线向上平移,当n=0时,图⑥变为图④,上面的等式就是图④中的等式,所以上面结论是图④中结论的推广.(12分)
点评:本题是一个探究性很强的题目,主要考查等边三角形的性质,及结论在等腰梯形中的推广.
练习册系列答案
相关习题

科目:初中数学 来源:2007年全国中考数学试题汇编《锐角三角函数》(06)(解析版) 题型:解答题

(2007•白银)如图,秋千拉绳的长OB=4米,静止时,踏板到地面的距离BE=0.6米(踏板厚度忽略不计).小强荡该秋千时,当秋千拉绳OB运动到最高处OA时,拉绳OA与铅垂线OE的夹角为60°,试求:
(1)当秋千拉绳OB运动到最高处OA时,踏板离地面的高度AD是多少米?
(2)秋千荡回到OC(最高处)时,小强荡该秋千的“宽度”AC是多少米?(结果保留根号)

查看答案和解析>>

科目:初中数学 来源:2007年甘肃省白银等3市中考数学试卷(大纲卷)(解析版) 题型:填空题

(2007•白银)如图是某市晚报记者在抽样调查了一些市民用于读书、读报、参加“全民健身运动”等休闲娱乐活动的时间后,绘制的频率分布直方图(共六组),已知从左往右前五组的频率之和为0.94,如果第六组有12个数,则此次抽样的样本容量是   

查看答案和解析>>

科目:初中数学 来源:2007年甘肃省白银等3市中考数学试卷(大纲卷)(解析版) 题型:选择题

(2007•白银)如图所示,四边形ABCD内接于⊙O,∠BOD=140°,则∠BCD等于( )

A.140°
B.110°
C.70°
D.20°

查看答案和解析>>

科目:初中数学 来源:2006年福建省南平市中考数学试卷(解析版) 题型:解答题

(2007•白银)如图,AB是⊙O的弦,OC⊥OA交AB于点C,过B的直线交OC的延长线于点E,当CE=BE时,直线BE与⊙O有怎样的位置关系?请说明理由.

查看答案和解析>>

科目:初中数学 来源:2003年黑龙江省哈尔滨市中考数学试卷(解析版) 题型:选择题

(2007•白银)如图所示,四边形ABCD内接于⊙O,∠BOD=140°,则∠BCD等于( )

A.140°
B.110°
C.70°
D.20°

查看答案和解析>>

同步练习册答案