精英家教网 > 初中数学 > 题目详情
15.问题背景:如图(1),在△ABC中,已知AB=AC,BE=CF.
(1)发现问题:小华审题后发现,若连接CE,BF,则CE=BF,请说明理由;
(2)提出问题:如图(2),设CE与BF交于点O,则直线AO是BC边的垂直平分线吗?试说明理由;
(3)解决问题:在图(3)中,是各边相等,各内角也相等的正五边形ABCDE,请你只用无刻度的直尺画出图中BC边的垂直平分线.

分析 (1)证明△EBC≌△FCB即可;
(2)证明△EOB≌△FOC,得到OB=OC,根据线段垂直平分线的判定定理得到答案;
(3)根据点到线段的两个端点的距离相等的点在线段的垂直平分线上作图即可.

解答 解:(1)如图1中,连接EC、BF.
∵AB=AC,
∴∠ABC=∠ACB,
在△EBC和△FCB中,
$\left\{\begin{array}{l}{BE=CF}\\{∠ABC=∠ACB}\\{BC=CB}\end{array}\right.$,
∴△EBC≌△FCB,
∴CE=BF;

(2)结论:AO是BC边的中垂线,
理由:∵△EBC≌△FCB,
∴∠OEB=∠OFC,
在△EOB和△FOC中,
$\left\{\begin{array}{l}{∠OEB=∠OFC}\\{∠EOB=∠FOC}\\{BE=CF}\end{array}\right.$,
∴△EOB≌△FOC,
∴OB=OC,又AB=AC,
∴AO是BC边的中垂线;

(3)如图(3):连接AC、BD交于点O,作直线EO,直线EO即为线段BC的垂直平分线.

点评 本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.先化简,再求值:(x-4+$\frac{4}{x}$)÷($\frac{2}{x}$-1),其中x=2-$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.计算
(1)($\sqrt{80}$+$\sqrt{20}$)÷$\sqrt{5}$
(2)($\sqrt{3}$+1)($\sqrt{3}$-1)+(-2)0-$\root{3}{27}$
(3)根式$\root{a-b}{2a}$与$\sqrt{a+3}$是可以合并的最简二次根式,则b-a的值为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.已知抛物线y=ax2-2ax+c与y轴交于C点,与x轴交于A、B两点,点A的坐标是(-1,0),O是坐标原点,且|OC|=3|OA|
(1)求抛物线的函数表达式和直线BC的函数表达式;
(2)如图1,D为y轴的负半轴上的一点,且OD=2,以OD为边作正方形ODEF,将正方形ODEF一每秒1个单位的速度沿x轴的正方形移动,在运动过程中,设正方形ODEF与△OBC重叠部分的面积为s,运动的时间为t秒(0<t≤2).在运动过程中,s是否存在最大值?如果存在,求出这个最大值;如果不存在,请说明理由.
(3)如图2,点P在直线BC下方的抛物线上,若∠PBC=∠ACO,求P点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.如图,在方格纸中,△ABC经过变换得到△DEF,正确的变换是(  )
A.把△ABC向下平移4格,再绕点C逆时针方向旋转180°
B.把△ABC向下平移5格,再绕点C顺时针方向旋转180°
C.把△ABC绕点C逆时针方向旋转90°,再向下平移2格
D.把△ABC绕点C顺时针方向旋转90°,再向下平移5格

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.化简:$\frac{2x}{x-2}$+$\frac{4}{2-x}$=2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图,AB∥CD,则∠1+∠3-∠2的度数等于180°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,已知平行四边形ABCD,延长AD到E,使DE=AD,连接BE与DC交于O点.
(1)求证:△BOC≌△EOD;
(2)当△ABE满足什么条件时,四边形BCED是菱形?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.公交公司的某路公交车每月运营总支出的费用为4000元,乘客乘车的票价为2元/人次.设每月的乘客量为x(人次),每月的赢利额为y(元).(赢利额=总收入-总支出)
(1)y(元)与x(人次)之间的关系式为y=2x-4000;(x为正整数)
(2)根据关系式填表:
x/人次50010001500200025003000
y/元-3000-2000-1000010002000
(3)根据表格数据,当月乘客量超过2000人次时,该路公交车运营才能赢利.

查看答案和解析>>

同步练习册答案