9£®Ä³Ð£Ñо¿ÐÔѧϰС×éÒÔ¡°Ñ§Éúµ½Ñ§Ð£½»Í¨¹¤¾ßÀàÐÍ¡±ÎªÖ÷Ìâ¶ÔȫУѧÉú½øÐÐËæ»ú³éÑùµ÷²é£¬µ÷²éµÄÏîÄ¿ÓУº¹«¹²Æû³µ¡¢Ð¡³µ¡¢Ä¦Íгµ¡¢×ÔÐгµ¡¢ÆäËü£¨Ã¿Î»Í¬Ñ§½öѡһÏ£®¸ù¾Ýµ÷²é½á¹û»æÖÆÁËÈçϲ»ÍêÕûµÄƵÊý·Ö²¼±íºÍÉÈÐÎͳ¼ÆÍ¼£º
½»Í¨·½Ê½ÆµÊý£¨ÈËÊý£©ÆµÂÊ
¹«¹²Æû³µm0.25
С³µ240.20
ĦÍгµ36n
×ÔÐгµ180.15
ÆäËü120.10
Çë¸ù¾Ýͼ±íÐÅÏ¢½â´ðÏÂÁÐÎÊÌ⣺
£¨1£©±¾´Î¹²³éÑùµ÷²é120¸öѧÉú£»
£¨2£©Ìî¿Õ£ºÆµÊý·Ö²¼±íÖеÄm=30£¬n=0.3£»
£¨3£©ÔÚÉÈÐÎͳ¼ÆÍ¼ÖУ¬Çë¼ÆËã³ö¡°Ä¦Íгµ¡±ËùÔÚµÄÉÈÐεÄÔ²ÐĽǵĶÈÊý£®

·ÖÎö £¨1£©¸ù¾ÝƵÂÊ=$\frac{ƵÊý}{Ñù±¾ÈÝÁ¿}$½øÐмÆË㣻
£¨2£©¸ù¾ÝƵÂÊ=$\frac{ƵÊý}{Ñù±¾ÈÝÁ¿}$½øÐмÆË㣻
£¨3£©¸ù¾ÝÔÚÉÈÐÎͳ¼ÆÍ¼ÖУ¬Ã¿²¿·ÖÕ¼×ܲ¿·ÖµÄ°Ù·Ö±ÈµÈÓڸò¿·ÖËù¶ÔÓ¦µÄÉÈÐÎÔ²ÐĽǵĶÈÊýÓë360¡ãµÄ±È¼ÆË㣮

½â´ð ½â£º£¨1£©ÓÉÆµÊý·Ö²¼±í¿ÉÖª£¬ÆïĦÍгµµÄƵÊýÊÇ24£¬ÆµÂÊÊÇ0.2£¬
ÔòÑù±¾ÈÝÁ¿Îª24¡Â0.2=120£¬
¹Ê´ð°¸Îª£º120£»
£¨2£©m=120¡Á0.25=30£¬
n=36¡Â120=0.3£¬
¹Ê´ð°¸Îª£º30£»0.3£»
£¨3£©¡°Ä¦Íгµ¡±ËùÔÚµÄÉÈÐεÄÔ²ÐĽǵĶÈÊýΪ£º0.3¡Á360¡ã=108¡ã£¬
´ð£º¡°Ä¦Íгµ¡±ËùÔÚµÄÉÈÐεÄÔ²ÐĽǵĶÈÊýΪ108¡ã£®

µãÆÀ ±¾Ì⿼²éµÄÊÇÌõÐÎͼ¡¢ÆµÊý·Ö²¼±í¡¢ÉÈÐÎͼµÄ֪ʶ£¬¶Á¶®Í³¼ÆÍ¼£¬´Óͳ¼ÆÍ¼Öеõ½±ØÒªµÄÐÅÏ¢Êǽâ¾öÎÊÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®µãA£¨-4£¬0£©ÓëµãB£¨4£¬0£©ÊÇ£¨¡¡¡¡£©
A£®¹ØÓÚyÖá¶Ô³ÆB£®¹ØÓÚxÖá¶Ô³Æ
C£®¹ØÓÚ×ø±êÖá¶¼¶Ô³ÆD£®ÒÔÉϴ𰸶¼´í

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Èçͼ£¬ËıßÐÎABCDÊÇÆ½ÐÐËıßÐΣ®
£¨1£©ÀûÓó߹æ×÷¡ÏABCµÄƽ·ÖÏßBE£¬½»ADÓÚE£¨±£Áô×÷ͼºÛ¼££¬²»Ð´×÷·¨£©£»
£¨2£©ÔÚ£¨1£©Ëù×÷µÄͼÐÎÖУ¬ÇóÖ¤£ºAB=AE£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®½â²»µÈʽ×飺$\left\{\begin{array}{l}{1+x£¾-2£¬}&{¢Ù}\\{\frac{2x-1}{3}¡Ü1£¬}&{¢Ú}\end{array}\right.$£®Çë½áºÏÌâÒâÌî¿Õ£¬Íê³É±¾ÌâµÄ½â´ð£®
£¨¢ñ£©½â²»µÈʽ¢Ù£¬µÃx£¾-3£»
£¨¢ò£©½â²»µÈʽ¢Ú£¬µÃx¡Ü2£»
£¨¢ó£©°Ñ²»µÈʽ¢ÙºÍ¢ÚµÄ½â¼¯ÔÚÊýÖáÉϱíʾ³öÀ´£º
£¨¢ô£©Ô­²»µÈʽ×éµÄ½â¼¯Îª-3£¼x¡Ü2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®Èçͼ£¬ÔÚ4¡Á4µÄÍø¸ñͼÖУ¬Ð¡Õý·½Ðεı߳¤Îª1£¬ÔòͼÖÐÓÃ×Öĸ±íʾµÄËÄÌõÏß¶ÎÖ㤶ÈΪ$\sqrt{10}$µÄÏß¶ÎÊÇAD£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Èçͼ£¬Ö±Ïßa¡Îb£¬½«Èý½Ç³ßµÄÖ±½Ç¶¥µã·ÅÔÚÖ±ÏßbÉÏ£¬¡Ï1=35¡ã£¬Çó¡Ï2µÄ¶ÈÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Èçͼ£¬ÔÚ¾ØÐÎOABCÖУ¬OA=2OC£¬¶¥µãOÔÚ×ø±êÔ­µã£¬¶¥µãAµÄ×ø±êΪ£¨8£¬6£©£®
£¨1£©¶¥µãCµÄ×ø±êΪ£¨-3£¬4£©£¬¶¥µãBµÄ×ø±êΪ£¨5£¬10£©£»
£¨2£©ÏÖÓж¯µãP¡¢Q·Ö±ð´ÓC¡¢Aͬʱ³ö·¢£¬µãPÑØÏß¶ÎCBÏòÖÕµãBÔ˶¯£¬ËÙ¶ÈΪÿÃë2¸öµ¥Î»£¬µãQÑØÕÛÏßA¡úO¡úCÏòÖÕµãCÔ˶¯£¬ËÙ¶ÈΪÿÃëk¸öµ¥Î»£®µ±Ô˶¯Ê±¼äΪ2Ãëʱ£¬ÒÔµãP¡¢Q¡¢C¶¥µãµÄÈý½ÇÐÎÊǵÈÑüÈý½ÇÐΣ¬ÇókµÄÖµ£»
£¨3£©Èô¾ØÐÎOABCÒÔÿÃë$\frac{5}{3}$¸öµ¥Î»µÄËÙ¶ÈÑØÉäÏßAOÏ»¬£¬Ö±ÖÁ¶¥µãAµ½´ï×ø±êÔ­µãʱֹͣÏ»¬£®Éè¾ØÐÎOABCÔÚxÖáÏ·½²¿·ÖµÄÃæ»ýΪS£¬ÇóS¹ØÓÚ»¬ÐÐʱ¼ätµÄº¯Êý¹ØÏµÊ½£¬²¢Ð´³öÏàÓ¦×Ô±äÁ¿tµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®µ±xÊǶàÉÙʱ£¬$\frac{\sqrt{x}}{2x-1}$ÔÚʵÊý·¶Î§ÄÚÓÐÒâÒ壮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÎÒÃÇÖªµÀ£º¡°Èôab=0£¬Ôòa=0»òb=0¡±£¬Ò»Ôª¶þ´Î·½³Ìx2-x-2=0£¬¿Éͨ¹ýÒòʽ·Ö½â»¯Îª£¨x-2£©£¨x+1£©=0£¬ÄÇôx-2=0»òx+1=0£¬¼´·½³ÌµÄ½âΪx=2»òx=-1£®
£¨1£©ÀûÓÃÒòʽ·Ö½âÇó·½³Ìx2+x-6=0µÄ½â£»
£¨2£©Èô£¨x2+y2£©£¨x2+y2-1£©-2=0£¬Çóx2+y2µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸