精英家教网 > 初中数学 > 题目详情
如图,若Rt△ABC,∠C=90°,CD为斜边上的高,AC=m,AB=n,则△ACD的面积与△BCD的面积比的值是( )

A.
B.
C.
D.
【答案】分析:先根据题意判断出Rt△ADC∽Rt△ABC,利用对应线段成比例求得线段AD的长,然后再得到△ACD∽△BCD,根据相似三角形的面积比等于相似比的平方进行解答即可.
解答:解:∵CD⊥AD于点D,∠C=90°,
∴∠ACD=∠ABC,
∴△ACD∽ABC,

即:AD==
∴在直角三角形ADC中,由勾股定理得:CD2=AC2-AD2=m2-
∵∠B=∠ACD
∴△ACD∽△BCD,
=(2===
故选C.
点评:本题考查了相似三角形的判定与性质,解题的关键是两次证得直角三角形相似并利用相似三角形面积的比等于相似比的平方求得两三角形面积的比.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2010•黔东南州)如图,若Rt△ABC,∠C=90°,CD为斜边上的高,AC=m,AB=n,则△ACD的面积与△BCD的面积比
S△BCD
S△ACD
的值是(  )

查看答案和解析>>

科目:初中数学 来源:2013年初中数学单元提优测试卷-相似的判定选择题(带解析) 题型:单选题

如图,若Rt△ABC,∠C=90°,CD为斜边上的高,AC=m,AB=n,则△ACD的面积与△BCD的面积比的值是(  )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:2013年初中数学单元提优测试卷-相似的判定选择题(解析版) 题型:选择题

如图,若Rt△ABC,∠C=90°,CD为斜边上的高,AC=m,AB=n,则△ACD的面积与△BCD的面积比的值是(  )

A.              B.           C.          D.

 

查看答案和解析>>

科目:初中数学 来源:2010年贵州省黔东南州中考数学试卷(解析版) 题型:选择题

如图,若Rt△ABC,∠C=90°,CD为斜边上的高,AC=m,AB=n,则△ACD的面积与△BCD的面积比的值是( )

A.
B.
C.
D.

查看答案和解析>>

同步练习册答案