精英家教网 > 初中数学 > 题目详情
(2013•锦州)如图,直线y=mx与双曲线y=
k
x
交于A,B两点,过点A作AM⊥x轴,垂足为点M,连接BM,若S△ABM=2,则k的值为(  )
分析:根据反比例的图象关于原点中心对称得到点A与点B关于原点中心对称,则S△OAM=S△OBM,而S△ABM=2,S△OAM=1,然后根据反比例函数y=
k
x
(k≠0)系数k的几何意义即可得到k=-2.
解答:解:∵直线y=mx与双曲线y=
k
x
交于A,B两点,
∴点A与点B关于原点中心对称,
∴S△OAM=S△OBM
而S△ABM=2,
∴S△OAM=1,
1
2
|k|=1,
∵反比例函数图象在第二、四象限,
∴k<0,
∴k=-2.
故选A.
点评:本题考查了反比例函数y=
k
x
(k≠0)系数k的几何意义:从反比例函数y=
k
x
(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•锦州)如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.
(1)求证:BE与⊙O相切;
(2)设OE交⊙O于点F,若DF=1,BC=2
3
,求由劣弧BC、线段CE和BE所围成的图形面积S.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•锦州)如图,方格纸中的每个小正方形边长都是1个长度单位,Rt△ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(1,1),点B的坐标为(4,1).
(1)先将Rt△ABC向左平移5个单位长度,再向下平移1个单位长度得到Rt△A1B1C1,试在图中画出Rt△A1B1C1,并写出点A1的坐标;
(2)再将Rt△A1B1C1绕点A1顺时针旋转90°后得到Rt△A2B2C2,试在图中画出Rt△A2B2C2,并计算Rt△A1B1C1在上述旋转过程中点C1所经过的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•锦州)如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE.
求证:OE=BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•锦州)如图,某公司入口处有一斜坡AB,坡角为12°,AB的长为3m,施工队准备将斜坡修成三级台阶,台阶高度均为hcm,深度均为30cm,设台阶的起点为C.
(1)求AC的长度;
(2)求每级台阶的高度h.
(参考数据:sin12°≈0.2079,cos12°≈0.9781,tan12°≈0.2126.结果都精确到0.1cm)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•锦州)如图1,等腰直角三角板的一个锐角顶点与正方形ABCD的顶点A重合,将此三角板绕点A旋转,使三角板中该锐角的两条边分别交正方形的两边BC,DC于点E,F,连接EF.
(1)猜想BE、EF、DF三条线段之间的数量关系,并证明你的猜想;
(2)在图1中,过点A作AM⊥EF于点M,请直接写出AM和AB的数量关系;
(3)如图2,将Rt△ABC沿斜边AC翻折得到Rt△ADC,E,F分别是BC,CD边上的点,∠EAF=
12
∠BAD,连接EF,过点A作AM⊥EF于点M,试猜想AM与AB之间的数量关系.并证明你的猜想.

查看答案和解析>>

同步练习册答案