½â´ð£º½â£º£¨1£©ÔÚÅ×ÎïÏßy=x
2+px+qÖУ¬
µ±x=0ʱ£¬y=q£®¼´£ºCµãµÄ×ø±êΪ£¨0£¬q£©£®
ÒòΪ£ºOA=OC£¬DµãÓëAµã¹ØÓÚyÖá¶Ô³Æ£®
ËùÒÔ£ºAµãµÄ×ø±êΪ£¨q£¬0£©£»DµãµÄ×ø±êΪ£¨-q£¬0£©£®
½«A£¨q£¬0£©´úÈëy=x
2+px+qÖеãº0=q
2+pq+q
¼´£ºq£¨q+p+1£©=0
ËùÒÔ£ºq=0£¬£¨²»·ûºÏÌâÒ⣬ÉáÈ¥£®£©
q+p=-1 ¢Ù
ÏÖÔÚÇóµãPµÄ×ø±ê£¬¼´Å×ÎïÏßy=x
2+px+q¶¥µãµÄ×ø±ê£º
ºá×ø±ê£º-
£»×Ý×ø±ê£º
£¬
ÉèÖ±ÏßCDµÄ·½³ÌΪy=kx+b
ÒòΪֱÏßCD¹ýC£¨0£¬q£©¡¢D£¨-q£¬0£©Á½µã£¬ËùÒÔÓз½³Ì×é
q=b£¬0=-qk+b£®
½âµÃ£ºk=1£¬b=q£®
ËùÒÔÖ±ÏßCDµÄ½âÎöʽΪ£ºy=x+q£®
ÒòΪµãPÔÚÖ±ÏßCDÉÏ£¬
ËùÒÔ
=-
+q
½âµÃ£ºp=0£¨²»·ûºÏÌâÒ⣬ÉáÈ¥£©
p=2 ¢Ú
ÓÖÒѾÇóµÃµÄ¢Ù¡¢¢ÚÁ½µÈʽµÃ£ºp=2£¬q=-3£®
Òò´Ë£»p¡¢qµÄÖµ·Ö±ðΪ 2ºÍ-3£®
£¨2£©¡ßp=2£¬q=-3£®
¡àÅ×ÎïÏߵĽâÎöʽΪy=x
2+2x-3£¬
A¡¢D¡¢C¡¢PËĵãµÄ×ø±ê·Ö±ðΪ£¨-3£¬0£©¡¢£¨3£¬0£©¡¢£¨0£¬-3£©¡¢£¨-1£¬-4£©£®
Ö±ÏßCDµÄ·½³ÌʽΪy=x-3£¬
É裺¹ýAµãÓëÖ±ÏßCDƽÐеÄÖ±ÏßAQµÄ·½³ÌΪ£º
y=x+b£¨ÒòÁ½Ö±ÏßƽÐУ¬ËùÒÔÒ»´ÎÏîϵÊýÏàµÈ£©
ÒòΪµãA£¨-3£¬0£©ÔÚÖ±ÏßAQÉÏ£¬½«Æä´úÈëy=x+bÖеãº0=-3+b£¬½âµÃ£ºb=3
ËùÒÔ£ºÖ±ÏßAQµÄ·½³ÌΪ£ºy=x+3
ÏÂÃæÇóÖ±ÏßAQ£¨y=x+3£©ÓëÅ×ÎïÏßy=x
2+2x-3µÄ½»µãQµÄ×ø±ê£º
½â·½³Ì×éy=x
2+2x-3£¬y=x+3£®µÃx
1=2£¬y
1=5£»x
2=-3£¬y
2=0£®
¼´£ºÁ½½»µãΪA£¨-3£¬0£©£»Q£¨2£¬5£©£®
ÏÂÃæÔÙÇóA¡¢QÁ½µã¾àÀëºÍP¡¢DÁ½µã¾àÀ룺´ÓͼÐοÉÖª
|AQ|=5
£¬|PD|=4
£¬
ËùÒÔ|AQ|¡Ù|PD|
Õâ˵Ã÷AQÓëPD²»ÏàµÈ£¬ËùÒÔÔÚÅ×ÎïÏßÉϲ»´æÔÚÂú×ãËıßÐÎAPDQÊÇƽÐÐËıßÐεÄQµã£®
£¨3£©´æÔÚEµã£¬ÇÒEµã×ø±êΪ£¨9£¬6£©£®
¾ßÌåÇó½â¹ý³ÌÈçÏ£º
ÉèEµãÊÇÖ±ÏßPCÉϵĵ㣬ÇÒÂú×ãAE´¹Ö±AP
ÇóÖ±ÏßAPµÄ·½³Ì£¬ÉèÖ±ÏßAPµÄ·½³ÌΪy=kx+b
ÒòΪA£¨-3£¬0£©£¬P£¨-1£¬-4£©Á½µãÔÚÖ±ÏßAPÉÏ£¬ËùÒÔÓз½³Ì×é
0=-3k+b£¬-4=-k+b£®½âµÃ£ºk=-2£¬b=-6£®
ËùÒÔÖ±ÏßAPµÄ·½³ÌʽΪ£ºy=-2x-6
ÒòΪֱÏßAE´¹Ö±Ö±ÏßAC£¬ËùÒÔÁ½Ö±ÏßÒ»´ÎÏîϵÊýÖ®»ýµÈÓÚ-1
ËùÒÔ£¬ÉèÖ±ÏßAE·½³ÌʽΪy=
x+b
A£¨-3£¬0£©µãÔÚÖ±ÏßAEÉÏ£¬ËùÒÔb=
£¬
ËùÒÔÖ±ÏßAEµÄ·½³ÌʽΪy=
x+
£¬
Ö±ÏßAEÓëÖ±ÏßCDÏཻÓÚEµã£¬½âÁ½Ö±Ïß·½³Ì×é³ÉµÄ·½³Ì×éµÃ£ºx=9£¬y=6£®
¼´EµãµÄ×ø±êΪ£¨9£¬6£©£®
ÔÚÈý½ÇÐÎACDÖУ¬ÒòΪOA=OD=OC£¬AD´¹Ö±CO£¬
ËùÒÔ¡ÏACDÊÇÖ±½Ç£¬
ÔÚÖ±½ÇÈý½ÇÐÎAPEÖУ¬ACÊÇб±ßPEÉϵĸߣ¬
ËùÒÔ¡÷APC¡×¡÷EPA£®