精英家教网 > 初中数学 > 题目详情
17.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(-1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(-3,y1)、点B(-$\frac{1}{2}$,y2)、点C($\frac{7}{2}$,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x-5)=-3的两根为x1和x2,且x1<x2,则x1<-1<5<x2.其中正确的结论是①③⑤.

分析 根据抛物线的对称轴为直线x=2,则有4a+b=0;观察函数图象得到当x=-3时,函数值小于0,则9a-3b+c<0,即9a+c<3b;由于x=-1时,y=0,则a-b+c=0,易得c=-5a,所以8a+7b+2c=8a-28a-10a=-30a,再根据抛物线开口向下得a<0,于是有8a+7b+2c>0;利用抛物线的对称性得到($\frac{1}{2}$,y3),然后利用二次函数的增减性求解即可,作出直线y=-3,然后依据函数图象进行判断即可.

解答 解:∵x=-$\frac{b}{2a}$=2,
∴4a+b=0,故①正确.
由函数图象可知:当x=-3时,y<0,即9a-3b+c<0,
∴9a+c<3b,故②错误.
∵抛物线与x轴的一个交点为(-1,0),
∴a-b+c=0
又∵b=-4a,
∴a+4a+c=0,即c=-5a,
∴8a+7b+2c=8a-28a-10a=-30a,
∵抛物线开口向下,
∴a<0,
∴8a+7b+2c>0,故③正确;
∵抛物线的对称轴为x=2,C($\frac{7}{2}$,y3),
∴($\frac{1}{2}$,y3).
∵-3<-$\frac{1}{2}$<$\frac{1}{2}$,在对称轴的左侧,
∴y随x的增大而增大,
∴y1<y2<y3,故④错误.
方程a(x+1)(x-5)=0的两根为x=-1或x=5,
过y=-3作x轴的平行线,直线y=-3与抛物线的交点的横坐标为方程的两根,

依据函数图象可知:x1<-1<5<x2
故答案为:①③⑤.

点评 本题主要考查的是二次函数的图象与系数的关系、抛物线与x轴的交点,熟练掌握二次函数的性质以及数学结合是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.先阅读一段文字,再回答下列问题:已知在平面内两点坐标P1(x1,y1),P2(x2,y2),其两点间距离公式为P1P2=$\sqrt{{{({{x_2}-{x_1}})}^2}+{{({{y_2}-{y_1}})}^2}}$,同时,当两点所在直线在坐标轴上或平行于x轴或垂直于x轴时,两点间距离公式可化简为|x2-x1|或|y2-y1|.
(1)已知A(3,5)、B(-2,-1),则A,B两点间的距离为$\sqrt{61}$;
(2)已知A,B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为-1,则A,B两点间的距离为6;
(3)已知一个三角形各顶点坐标为A(0,6),B(-3,2),C(3,2),请判定此三角形的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.已知m是方程2x-1=5的解,则代数式3m-2的值为(  )
A.-11B.-8C.4D.7

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,四边形ABCD和CEFG都是正方形,M是DG的中点.
(1)当∠BCE=90°时,求证:MC⊥BE;
(2)将正方形CEFG绕C点按顺时针方向旋转角α(0°<α<90°),MC⊥BE是否仍然成立?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如果用A表示事件“若a>b,则a+c>b+c”,用P(A)表示“事件A发生的概率”,那么下列结论中正确的是(  )
A.P(A)=1B.P(A)=0C.0<P(A)<1D.P(A)>1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,已知抛物线y=ax2+4(a≠0)与x轴交于点A和点B(2,0),与y轴交于点C,点D是抛物线在第一象限的点.
(1)当△ABD的面积为4时,
①求点D的坐标;
②联结OD,点M是抛物线上的点,且∠MDO=∠BOD,求点M的坐标;
(2)直线BD、AD分别与y轴交于点E、F,那么OE+OF的值是否变化,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.小聪用100元钱去购买笔记本和钢笔共15件,已知每本笔记本5元,每支钢笔7元,小聪最多能买(  )支钢笔.
A.10B.11C.12D.13

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,点A是x轴非负半轴上的动点,点B坐标为(0,4),M是线段AB的中点,将点M绕点A顺时针方向旋转90°得到点C,过点C作x轴的垂线,垂足为F,过点B作y轴的垂线与直线CF相交于点E,连接AC,BC,设点A的横坐标为t.
(Ⅰ)当t=2时,求点M的坐标;
(Ⅱ)设△BCE的面积为S,当点C在线段EF上时,求S与t之间的函数关系式,并写出自变量t的取值范围;
(Ⅲ)当t为何值时,BC+CA取得最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.解方程:$\frac{2}{3}$x=$\frac{1}{12}$x2+$\frac{3}{x^2}$+$\frac{4}{x}$.

查看答案和解析>>

同步练习册答案