精英家教网 > 初中数学 > 题目详情

已知抛物线y=ax2-x-c过点A(-6,0),与y轴交于点B,顶点为D,对称轴是直线x=-2.
(1)求此抛物线的表达式及点D的坐标;
(2)连接DO,求证:∠AOD=∠ABO;
(3)点P在y轴上,且△ADP与△AOB相似,求点P的坐标.

解:(1)由题意得
解得
∴抛物线的表达式为y=-x2-x+3,
顶点D坐标为(-2,4);

(2)过D作DH⊥x轴,
∵D(-2,4),
∴在Rt△DHO中tan∠AOD=2,
又∵B(0,3),A(-6,0),
∴在Rt△ABO中tan∠ABO=2,
∴∠AOD=∠ABO;

(3)∵△ADP与△AOB相似,而△AOB为直角三角形,
∴△ADP也为直角三角形,
∴情况1:若∠DAP=90°,
∵D(-2,4),A(-6,0),
∴∠DAO=45°,∴∠OAP=45°,
∴P(0,-6)
但此时AD=4,AP=6
=,又=
∴△ADP与△AOB不相似,
∴此时点P不存在.
情况2:若∠ADP=90°,
∵D(-2,4),A(-6,0),
∴∠ADH=45°,∴∠HDP=45°,
∴P(0,2)
此时,===,且∠ADP=∠AOB,
∴△ADP与△AOB相似,
即当P(0,2)时,使得△ADP与△AOB相似.
情况3:若∠APD=90°,设P(0,t),
则AP2+PD2=AD2
即36+t2+4+(t-4)2=32,得t2-4t+12=0,
∵△<0,
∴无解,
∴点P不存在.
综上所述,点P的坐标是(0,2).
分析:(1)将对称轴是直线x=-2,以及点A(-6,0),代入解析式求出即可;
(2)过D作DH⊥x轴,利用D(-2,4),得出在Rt△DHO中tan∠AOD=2,进而得出∠AOD=∠ABO;
(3)分别根据情况1:若∠DAP=90°,情况2:若∠ADP=90°,情况3:若∠APD=90°,分析得出P点坐标即可.
点评:此题主要考查了待定系数法求二次函数解析式以及相似三角形的性质与判定,以及分类讨论思想的应用,根据△ADP不同角为90度分别得出是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-2,0),B(0,-4),C(2,-4)三点,且精英家教网与x轴的另一个交点为E.
(1)求抛物线的解析式;
(2)用配方法求抛物线的顶点D的坐标和对称轴;
(3)求四边形ABDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=ax2和直线y=kx的交点是P(-1,2),则a=
 
,k=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

2、已知抛物线y=ax2+bx+c的开口向下,顶点坐标为(2,-3),那么该抛物线有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知抛物线y=ax2+bx+c(其中b>0,c<0)的顶点P在x轴上,与y轴交于点Q,过坐标原点O,作OA⊥PQ,垂足为A,且OA=
2
,b+ac=3.
(1)求b的值;
(2)求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•广州)已知抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),顶点为B,且抛物线不经过第三象限.
(1)使用a、c表示b;
(2)判断点B所在象限,并说明理由;
(3)若直线y2=2x+m经过点B,且于该抛物线交于另一点C(
ca
,b+8
),求当x≥1时y1的取值范围.

查看答案和解析>>

同步练习册答案