精英家教网 > 初中数学 > 题目详情
(2012•山西)如图,AB是⊙O的直径,C、D是⊙O上一点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于(  )
分析:连接OC,由CE为圆O的切线,根据切线的性质得到OC垂直于CE,即三角形OCE为直角三角形,再由同弧所对的圆心角等于所对圆周角的2倍,由圆周角∠CDB的度数,求出圆心角∠COB的度数,在直角三角形OCE中,利用直角三角形的两锐角互余,即可求出∠E的度数.
解答:解:连接OC,如图所示:
∵圆心角∠BOC与圆周角∠CDB都对
BC

∴∠BOC=2∠CDB,又∠CDB=20°,
∴∠BOC=40°,
又∵CE为圆O的切线,
∴OC⊥CE,即∠OCE=90°,
则∠E=90°-40°=50°.
故选B
点评:此题考查了切线的性质,圆周角定理,以及直角三角形的性质,遇到直线与圆相切,连接圆心与切点,利用切线的性质得垂直,根据直角三角形的性质来解决问题.熟练掌握性质及定理是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•山西)如图,直线AB∥CD,AF交CD于点E,∠CEF=140°,则∠A等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•山西)如图,在平面直角坐标系中,矩形OABC的对角线AC平行于x轴,边OA与x轴正半轴的夹角为30°,OC=2,则点B的坐标是
(2,2
3
(2,2
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•山西)如图所示的工件的主视图是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•山西)如图是某公园的一角,∠AOB=90°,弧AB的半径OA长是6米,C是OA的中点,点D在弧AB上,CD∥OB,则图中休闲区(阴影部分)的面积是(  )

查看答案和解析>>

同步练习册答案