精英家教网 > 初中数学 > 题目详情
如图,四边形ABCD是平行四边形,点A(1,0),B(3,1),C(3,3),反比例函数y=
mx
(x>0)
的图象经过点D,点P是一次函数y=kx+3-3k(k≠0)的图象与该反比例函数图象的一个公共点
①求反比例函数解析式;
②通过计算,说明一次函数y=kx+3-3k(k≠0)的图象一定过点C;
③对于一次函数y=kx+3-kx(k≠0)当y随x的增大而增大时,确定点P的横坐标的取值范围(不必写过程)
分析:(1)由B(3,1),C(3,3)得到BC⊥x轴,BC=2,根据平行四边形的性质得AD=BC=2,而A点坐标为(1,0),可得到点D的坐标为(1,2),然后把D(1,2)代入y=
m
x
即可得到m=2,从而可确定反比例函数的解析式;
(2)把x=3代入y=kx+3-3k(k≠0)得到y=3,即可说明一次函数y=kx+3-3k(k≠0)的图象一定过点C;
(3)设点P的横坐标为a,由于一次函数y=kx+3-3k(k≠0)过C点,并且y随x的增大而增大时,则P点的纵坐标要小于3,横坐标要小于3,当纵坐标小于3时,由y=
2
x
得到a>
2
3
,于是得到a的取值范围.
解答:解:(1)∵四边形ABCD是平行四边形,
∴AD=BC,
∵B(3,1),C(3,3),
∴BC⊥x轴,AD=BC=2,
而A点坐标为(1,0),
∴点D的坐标为(1,2).
∵反比例函数y=
m
x
(x>0)的函数图象经过点D(1,2),
∴2=
m
1

∴m=2,
∴反比例函数的解析式为y=
2
x


(2)当x=3时,y=kx+3-3k=3k+3-3k=3,
∴一次函数y=kx+3-3k(k≠0)的图象一定过点C;

(3)设点P的横坐标为a,
∵一次函数y=kx+3-3k(k≠0)过C点,并且y随x的增大而增大时,
∴k>0,P点的纵坐标要小于3,横坐标要小于3,
当纵坐标小于3时,∵y=
2
x
,∴
2
a
<3,解得:a>
2
3

则a的范围为
2
3
<a<3.
点评:本题考查了反比例函数综合题:点在函数图象上,则点的横纵坐标满足图象的解析式;利用平行四边形的性质确定点的坐标;掌握一次函数的增减性.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC与BD互相垂直平分于点O,设AC=2a,BD=2b,请推导这个四边形的性质.(至少3条)
(提示:平面图形的性质通常从它的边、内角、对角线、周长、面积等入手.)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC、BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+CF.
(1)求证:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,四边形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD为正方形,E是BC的延长线上的一点,且AC=CE,求∠DAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.

(I)求证:AE=EF;
(Ⅱ)若将条件中的“点E是BC的中点”改为“E是BC上任意一点”,其余条件不变,则结论AE=EF还成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案