精英家教网 > 初中数学 > 题目详情

【题目】2017赤峰)已知平行四边形ABCD.
(1)尺规作图:作∠BAD的平分线交直线BC于点E,交DC延长线于点F(要求:尺规作图,保留作图痕迹,不写作法);
(2)在(1)的条件下,求证:CE=CF.

【答案】
(1)解:如图所示,AF即为所求;


(2)解:∵四边形ABCD是平行四边形,

∴AB∥DC,AD∥BC,

∴∠1=∠2,∠3=∠4.

∵AF平分∠BAD,

∴∠1=∠3,

∴∠2=∠4,

∴CE=CF


【解析】(1)作∠BAD的平分线交直线BC于点E,交DC延长线于点F即可;(2)先根据平行四边形的性质得出AB∥DC,AD∥BC,故∠1=∠2,∠3=∠4.再由AF平分∠BAD得出∠1=∠3,故可得出∠2=∠4,据此可得出结论.
【考点精析】根据题目的已知条件,利用平行四边形的性质的相关知识可以得到问题的答案,需要掌握平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知在等腰Rt△ABC中,∠C=90°,斜边AB=2,若将△ABC翻折,折痕EF分别交边AC、边BC于点E和点F(点E不与A点重合,点F不与B点重合),且点C落在AB边上,记作点D.过点D作DK⊥AB,交射线AC于点K,设AD=x,y=cot∠CFE,
(1)求证:△DEK∽△DFB;
(2)求y关于x的函数解析式并写出定义域;
(3)联结CD,当 = 时,求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为加强公路的节水意识,合理利用水资源,某市对居民用水实行阶梯水价,居民家庭每月用水量划分为两个阶梯,一、二阶梯用水的单价之比等于1:2,如图折线表示实行阶梯水价后每月水费y(元)与用水量x(m3)之间的函数关系,其中射线AB表示第二级阶梯时y与x之间的函数关系.
(1)写出点B的实际意义;
(2)求射线AB所在直线的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABCD中,AE平分∠BAD交边BC于E,DF平分∠ADC交边BC于F,若AD=11,EF=5,则AB=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,D为 的中点,连接OD交弦AC于点F,过点D作DE∥AC,交BA的延长线于点E.
(1)求证:DE是⊙O的切线;
(2)连接CD,若OA=AE=4,求四边形ACDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A是直线AM与⊙O的交点,点B在⊙O上,BD⊥AM垂足为D,BD与⊙O交于点C,OC平分∠AOB,∠B=60°.

(1)求证:AM是⊙O的切线;
(2)若DC=2,求图中阴影部分的面积(结果保留π和根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“富春包子”是扬州特色早点,富春茶社为了了解顾客对各种早点的喜爱情况,设计了如右图的调查问卷,对顾客进行了抽样调查.根据统计数据绘制了如下尚不完整的统计图.
根据以上信息,解决下列问题:
(1)条形统计图中“汤包”的人数是 , 扇形统计图中“蟹黄包”部分的圆心角为°;
(2)根据抽样调查结果,请你估计富春茶社1000名顾客中喜欢“汤包”的有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】函数f(x)=ex(﹣x2+2x+a)在区间[a,a+1]上单调递增,则实数a的最大值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图某超市举行“翻牌”抽奖活动,在一张木板上共有6个相同的牌,其分别对应价值为2元、5元、8元、10元、20元和50元的奖品.
(1)小雷在该抽奖活动中随机翻一张牌,求抽中10元奖品的概率;
(2)如果随机翻两张牌,且第一次翻过的牌不再参加下次翻牌,求两次抽中的奖品的总价值大于14元的概率.

查看答案和解析>>

同步练习册答案