分析 根据等边三角形的性质可得CD=CB,再根据等边对等角的性质求出∠BDC=∠DBC=30°,然后求出∠BDE=90°,再根据勾股定理列式进行计算即可得解.
解答 解:∵△ABC和△DCE都是边长为4的等边三角形,
∴CB=CD,
∴∠BDC=∠DBC=30°,
又∵∠CDE=60°,
∴∠BDE=90°,
在Rt△BDE中,DE=4,BE=8,
∴BD=$\sqrt{{BE}^{2}-{DE}^{2}}$=$\sqrt{{8}^{2}-{4}^{2}}$=4$\sqrt{3}$.
故答案为:4$\sqrt{3}$.
点评 本题考查了等边三角形的性质,勾股定理的应用,根据题意得出求出△BDE是直角三角形是解题的关键.
科目:初中数学 来源: 题型:选择题
| A. | 12000(1-x)2=14520 | B. | 14520(1-x)2=12000 | C. | 12000(1+x)2=14520 | D. | 14520(1+x)2=12000 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | x>-2 | B. | x<-2 | C. | -3<x<-2 | D. | -3<x<-1 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\left\{\begin{array}{l}{2(x+\frac{y}{2})=99}\\{\frac{x}{2}+y=66}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{2x+y=66}\\{\frac{x}{2}+y=99}\end{array}\right.$ | ||
| C. | $\left\{\begin{array}{l}{\frac{x}{2}+y=66}\\{\frac{x}{2}+2y=99}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x+2y=99}\\{2x+y=66}\end{array}\right.$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com