精英家教网 > 初中数学 > 题目详情

已知正、反比例函数的图象都经过点(-2,4),则它们的解析式为


  1. A.
    y=-2x,y=-数学公式
  2. B.
    y=-8x,y=-数学公式
  3. C.
    y=2x,y=数学公式
  4. D.
    y=8x,y=数学公式
A
分析:分别将点(-2,4)代入正比例函数和反比例函数的解析式即可求得其解析式.
解答:设正比例函数的解析式为y=k1x,反比例函数的解析式为y=
∵图象都经过点(-2,4),
∴k1=4÷(-2)=-2,k2=-2×4=-8
故选A.
点评:本题考查了待定系数法求正、反比例函数的解析式,因为只有一个待定系数,所以只需知道经过的一点即可求得反比例函数的解析式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知正、反比例函数的图象都经过点(-2,4),则它们的解析式为(  )

查看答案和解析>>

科目:初中数学 来源:2012年河南省中考数学热身卷(二)(解析版) 题型:解答题

(1)阅读理解:配方法是中学数学的重要方法,用配方法可求最大(小)值.
对于任意正实数a、b,可作如下变形a+b==-+=+
又∵≥0,∴+≥0+,即a+b≥
根据上述内容,回答下列问题:在a+b≥(a、b均为正实数)中,若ab为定值p,则a+b≥,当且仅当a、b满足______时,a+b有最小值
(2)思考验证:如图1,△ABC中,∠ACB=90°,CD⊥AB,垂足为D,CO为AB边上中线,AD=2a,DB=2b,试根据图形验证a+b≥成立,并指出等号成立时的条件.
(3)探索应用:如图2,已知A为反比例函数的图象上一点,A点的横坐标为1,将一块三角板的直角顶点放在A处旋转,保持两直角边始终与x轴交于两点D、E,F(0,-3)为y轴上一点,连接DF、EF,求四边形ADFE面积的最小值.

查看答案和解析>>

科目:初中数学 来源:2011年江苏省无锡市江阴高级中学中考数学二模试卷(解析版) 题型:解答题

(1)阅读理解:配方法是中学数学的重要方法,用配方法可求最大(小)值.
对于任意正实数a、b,可作如下变形a+b==-+=+
又∵≥0,∴+≥0+,即a+b≥
根据上述内容,回答下列问题:在a+b≥(a、b均为正实数)中,若ab为定值p,则a+b≥,当且仅当a、b满足______时,a+b有最小值
(2)思考验证:如图1,△ABC中,∠ACB=90°,CD⊥AB,垂足为D,CO为AB边上中线,AD=2a,DB=2b,试根据图形验证a+b≥成立,并指出等号成立时的条件.
(3)探索应用:如图2,已知A为反比例函数的图象上一点,A点的横坐标为1,将一块三角板的直角顶点放在A处旋转,保持两直角边始终与x轴交于两点D、E,F(0,-3)为y轴上一点,连接DF、EF,求四边形ADFE面积的最小值.

查看答案和解析>>

科目:初中数学 来源:2011年浙江省杭州市中考数学模拟试卷(32)(解析版) 题型:解答题

(1)阅读理解:配方法是中学数学的重要方法,用配方法可求最大(小)值.
对于任意正实数a、b,可作如下变形a+b==-+=+
又∵≥0,∴+≥0+,即a+b≥
根据上述内容,回答下列问题:在a+b≥(a、b均为正实数)中,若ab为定值p,则a+b≥,当且仅当a、b满足______时,a+b有最小值
(2)思考验证:如图1,△ABC中,∠ACB=90°,CD⊥AB,垂足为D,CO为AB边上中线,AD=2a,DB=2b,试根据图形验证a+b≥成立,并指出等号成立时的条件.
(3)探索应用:如图2,已知A为反比例函数的图象上一点,A点的横坐标为1,将一块三角板的直角顶点放在A处旋转,保持两直角边始终与x轴交于两点D、E,F(0,-3)为y轴上一点,连接DF、EF,求四边形ADFE面积的最小值.

查看答案和解析>>

同步练习册答案