精英家教网 > 初中数学 > 题目详情
为美化环境,建设绿色校园,学校计划铺设一块面积为30m2的等腰三角形绿地,已知等腰三角形一边长为10m,且顶角是锐角,试求这块等腰三角形绿地另外两边的长.
【答案】分析:由于等腰三角形的底边和腰长哪个是10米不能确定,故应分两种情况讨论:当等腰三角形△ABC,AB=AC,面积为30m2,若底边长BC=10m(如图1),作AD⊥BC,垂足为D,根据等腰三角形的面积可求出AD的长,由等腰三角形三线合一的性质求出BD的长,由勾股定理即可求出AB的长;若腰长AB=AC=10m(如图2),作BD⊥AC,垂足为D,根据三角形的面积公式求出BD的长,由勾股定理求出AD的长,求出CD=2,故可得出BC的长,进而得出结论.
解答:解:如图,等腰三角形△ABC,AB=AC,面积为30m2
若底边长BC=10m(如图1),作AD⊥BC,垂足为D,
∵S△ABC=AD×BC=30,
∴AD=6,
∵△ABC是等腰三角形,
∴BD=BC=5,
∴AB=AC=
若腰长AB=AC=10m(如图2),作BD⊥AC,垂足为D,
∵S△ABC=AC×BD=30,
∴BD=6,
∴AD==8,
∴CD=2,BC==2
∴这块等腰三角形绿地另外两边的长为或10m、
点评:本题考查的是勾股定理的应用及等腰三角形的性质,熟知等腰三角形三线合一的性质是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

为了美化校园环境,建设绿色校园,某学校准备对校园中30亩空地进行绿化.绿化采用种植草皮与种植树木两种方式,要求种植草皮与种植树木的面积都不少于10亩,并且种植草皮面积不少于种植树木面积的
32
.已知种植草皮与种植树木每亩的费用分别为8000元与12000元.
(1)种植草皮的最小面积是多少?
(2)种植草皮的面积为多少时绿化总费用最低,最低费用为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•江门模拟)为美化环境,建设绿色校园,学校计划铺设一块面积为30m2的等腰三角形绿地,已知等腰三角形一边长为10m,且顶角是锐角,试求这块等腰三角形绿地另外两边的长.

查看答案和解析>>

科目:初中数学 来源:2008年初中毕业升学考试(山东潍坊卷)数学(解析版) 题型:解答题

为了美化校园环境,建设绿色校园,某学校准备对校园中30亩空地进行绿化..绿化采用种植草皮与种植树木两种方式,要求种植草皮与种植树木的面积都不少于10亩,并且种植草皮面积不少于种植树木面积的.已知种植草皮与种植树木每亩的费用分别为8000元与12000元.

(1)种植草皮的最小面积是多少?

(2)种植草皮的面积为多少时绿化总费用最低?最低费用为多少?

 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

为美化环境,建设绿色校园,学校计划铺设一块面积为30m2的等腰三角形绿地,已知等腰三角形一边长为10m,且顶角是锐角,试求这块等腰三角形绿地另外两边的长.

查看答案和解析>>

同步练习册答案