精英家教网 > 初中数学 > 题目详情
如图,将边长为8
3
的正方形OEFP置于直角坐标系中,OE、OP分别与x轴、y轴的正半轴重合.
(1)直接写出正方形OEFP的周长;
(2)等边△ABC的边长为2
3
,顶点A与坐标原点O重合,BC⊥x轴于点D,△ABC从点O出发,以每秒1个单位长的速度先向右平移,当BC边与直线EF重合时,继续以同样的速度向上平移,当点C与点F重合时,△ABC停止移动.设运动时间为t秒,△PAC的面积为y.①在△ABC向右平移的过程中,求y与t的函数关系式,并写出自变量t的取值范围;②当t为何值时,P、A、B三点在同一直线上(精确到0.1秒).
分析:(1)正方形的周长等于边长的4倍,即为32
3

(2)①连接PC,根据已知条件求出三角形ACD的面积,再用含有t的代数式分别表示出三角形POA和梯形POCD的面积,利用y=S梯形PODC-S△POA-S△ADC,即可求出y与t的函数关系式;
②当P、A、B在同一直线上时(如图所示),则Rt△PBF中,∠PBF=60°,取PB的中点G,连接GF,则GF=PG=GB,则三角形BGF为等边三角形,利用勾股定理求出PB、BF的值即可求出时间t.
解答:解:(1)∵边长为8
3
的正方形OEFP置于直角坐标系中,OE、OP分别与x轴、y轴的正半轴重合.
∴正方形OEFP的周长为:4×8
3
=32
3


(2)①连接PC,
∵等边△ABC的边长为2
3
,顶点A与坐标原点O重合,BC⊥x轴于点D,
∴AD=3,CD=
3
,PA=8
3

y=S梯形PODC-S△POA-S△ADC=
3
2
t+12
3

0≤t≤8
3
-3;
②当A在OE上,∠BAE=∠PAO>45°,∠BAC>90°,不存在,
当P、A、B在同一直线上时(如图所示),Rt△PBF中,∠PBF=60°,
取PB的中点G,连接GF,则GF=PG=GB,
∴△BGF是等边三角形∴BF=0.5PB,
根据勾股定理可得:PB=16,BF=8,
又∵AD=3,
∴t=8
3
-3+8
3
-8+
3
=17
3
-11,
≈18.4(秒).
点评:本题考查了正方形的性质、等边三角形的性质以及勾股定理的运用和分类讨论思想,题目综合性很强具有一定的难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,将边长为4的正方形置于平面直角坐标系第一象限,使AB边落在x轴正半轴上,且A点精英家教网的坐标是(1,0).
(1)直线y=
4
3
x-
8
3
经过点C,且与x轴交于点E,求四边形AECD的面积;
(2)若直线l经过点E,且将正方形ABCD分成面积相等的两部分,求直线l的解析式;
(3)若直线l1经过点F(-
3
2
,0
)且与直线y=3x平行.将(2)中直线l沿着y轴向上平移1个单位,交x轴于点M,交直线l1于点N,求△NMF的面积.

查看答案和解析>>

同步练习册答案