解:(1)C.
2sin(α+30°)=2(sinα•cos30°+cosα•sin30°)=

.
故答案选C.
(2)如图,过点A作AD⊥BC交BC的延长线于点D.

∵∠B=30°,∠BAC=α,AC=1,
∴∠ACD=α+30°.
∴在△ADC中,∠ADC=90°,AD=AC•sin∠ACD=sin(α+30°).
∵在△ABD中,∠ADB=90°,∠B=30°,
∴AB=2AD=2sin(α+30°)
过点C作CE⊥AB于E.
∴在△CEA中,∠AEC=90°,CE=sinα,AE=cosα.
在△BEC中,∠BEC=90°,

.
∴

.
∴

.
(3)由上面证明的等式易得

.

如图,过点A作AG⊥CD交CD的延长线于点G.
∵△ABD和△BCD是两个含45°和30°的直角三角形,BD=

,
∴∠ADG=75°,AD=8,

.
∵sin75°=sin(45°+30°)=

=

.
∴在△ADG中,∠AGD=90°,

.
∴S
△ADC=

=


=

.
分析:(1)利用关系式sin(α+β)=sinα•cosβ+cosα•sinβ即可解答.
(2)构造直角三角形,过A、C点作AD⊥BC交BC的延长线于点D,CE⊥AB于E,根据三角函数知识,可用α表示出AB的长度,再表示出AE和BE的长度,AB=AE+BE,分别让带有α两式相等即可.
(3)要求三角形的面积,必须找到三角形的一边和这条边上的高;过点A作AG⊥CD交CD的延长线于G点.根据题意可知CD和AD的长度,和∠ADG的度数,根据上述得出的结论,可以求出∠的正弦值,在直角三角形ADG中,AD已知,根据三角函数关系式即可得出AG的长度,代入S
△ADC的面积公式即可.
点评:本题考查了三角函数和化积差的函数式,要求学生掌握正余弦、正余切的和化积差和积差化和,熟练应用.