精英家教网 > 初中数学 > 题目详情
如图,在Rt△ABC中,∠ACB=90°,AC=6㎝,BC=8㎝,P为BC的中点.动点Q从点P出发,沿射线PC方向以2㎝/s的速度运动,以P为圆心,PQ长为半径作圆.设点Q运动的时间为t s.
⑴当t=1.2时,判断直线AB与⊙P的位置关系,并说明理由;
⑵已知⊙O为△ABC的外接圆,若⊙P与⊙O相切,求t的值.
  
解:⑴直线与⊙P相切.

如图,过点P作PD⊥AB, 垂足为D.
在Rt△ABC中,∠ACB=90°,∵AC=6cm,BC=8cm,
.∵P为BC的中点,∴PB=4cm.
∵∠PDB=∠ACB=90°,∠PBD=∠ABC.∴△PBD∽△ABC.
,即,∴PD ="2.4(cm)" .
时,(cm) 
,即圆心到直线的距离等于⊙P的半径.
∴直线与⊙P相切.
⑵∠ACB=90°,∴AB为△ABC的外切圆的直径.∴
连接OP.∵P为BC的中点,∴
∵点P在⊙O内部,∴⊙P与⊙O只能内切.
,∴=1或4. 
∴⊙P与⊙O相切时,t的值为1或4.
本试题主要是考查了圆内的性质的运用,以及直线与圆的为何只关系 的综合运用。
(1)当t=1.2时,要判断直线AB与⊙P的位置关系,只要求解圆心到直线的距离与圆的半径的关系即可以得到。
(2)⊙O为△ABC的外接圆,若⊙P与⊙O相切,则可以考虑是相互外切还是相互内切的情况,根据圆心距和半径的关系得到
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,△ABC内接于⊙O,AB=8,AC=4,D是AB边上一点,P是优弧的中点,连接PA、PB、PC、PD,当BD的长度为多少时,△PAD是以AD为底边的等腰三角形?并加以证明。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线与x轴、y轴分别相交于点A、B,与正比例函数的图象相交于点C、D(点C在点D的左侧),⊙O是以CD长为半径的圆。CE∥x轴,DE∥y轴,CE、DE相交于点E。
(1)△CDE是    ▲   三角形;点C的坐标为    ▲   ,点D的坐标为    ▲   (用含有b的代数式表示);
(2)b为何值时,点E在⊙O上?
(3)随着b取值逐渐增大,直线与⊙O有哪些位置关系?求出相应b的取值范围。

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在半径为5的⊙O中, 弦AB=6,OC⊥AB于点D ,交⊙O于点C ,则CD=           

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

某施工工地安放了一个圆柱形饮水桶的木制支架(如图1),若不计木条的厚
度,其俯视图如图2所示,已知AD垂直平分BC,AD=BC=48cm,则圆柱形饮水桶的底面半径的最大值
   ▲    cm.  

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

有一个底面半径为3cm,母线长10cm的圆锥,则其侧面积是    ▲   cm2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

定义:P、Q分别是两条线段a和b上任意一点,线段PQ长度的最小值叫做线段与线段的距离.
已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角系中四点.
(1)根据上述定义,当m=2,n=2时,如图1,线段BC与线段OA的距离是_____,
当m=5,n=2时,如图2,线段BC与线段OA的距离(即线段AB的长)为______

(2)如图3,若点B落在圆心为A,半径为2的圆上,线段BC与线段OA的距离记为d,求d关于m的函数解析式.
(3)当m的值变化时,动线段BC与线段OA的距离始终为2,线段BC的中点为M.
①求出点M随线段BC运动所围成的封闭图形的周长;
②点D的坐标为(0,2),m≥0,n≥0,作MH⊥x轴,垂足为H,是否存在m的值,使以A、M、H为顶点的三角形与△AOD相似,若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若两圆的半径分别为2和4,且圆心距为7,则两圆的位置关系为【   】
A.外切B.内切C.外离D.相交

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,△ABC内接于⊙O,若∠OAB=25°,则∠C的度数为
A.25°B.50°C.65°D.75°

查看答案和解析>>

同步练习册答案