精英家教网 > 初中数学 > 题目详情

在△ABC中,∠ACB=90°,以AC为直径的圆交斜边AB于点P.E是BC的中点,连接PE.
(1)如果圆O的半径为2,∠B=30°,求OE的长;
(2)求证:PE是⊙O的切线.

解:(1)∵圆O的半径为2,
∴AC=4.
∵∠ACB=90°,∠B=30°,
∴AB=8.
∵E是BC的中点,OA=OC,
∴OE=4;

证明:(2)连接OP.
∵E是BC的中点,OA=OC,
∴OE∥AB,
∴∠AP0=∠POE,∠A=∠EOC,
∵OA=OP,
∴∠A=∠APO,
∴∠POE=∠COE,
∵OP=OC,OE=OE,
∴△POE≌△COE.
∴∠OPE=∠ACB=90°.
∴PE是⊙O的切线.
分析:(1)根据30°所对的直角边是斜边的一半,求得AB的长,再根据三角形的中位线定理求得OE的长;
(2)要证PE是⊙O的切线,只要连接OP,证明△POE≌△COE,得出∠EPO=90°即可.
点评:本题考查切线的判定,要证某直线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.此题同时综合运用了直角三角形的性质以及三角形中位线定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在△ABC中,AC=8,BC=6,AB=10,则△ABC的外接圆半径长为(  )
A、10B、5C、6D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AC=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

17、在△ABC中,AC=5,中线AD=4,那么边AB的取值范围为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在△ABC中,AC与⊙O相切于点A,AC=AB=2,⊙O交BC于D.
(1)∠C=
45
45
°;
(2)BD=
2
2

(3)求图中阴影部分的面积(结果用π表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•松江区二模)如图,已知在△ABC中,AC=15,AB=25,sin∠CAB=
45
,以CA为半径的⊙C与AB、BC分别交于点D、E,联结AE,DE.
(1)求BC的长;
(2)求△AED的面积.

查看答案和解析>>

同步练习册答案