精英家教网 > 初中数学 > 题目详情
6、已知:如图△ABC是等边三角形,过AB边上的点D作DG∥BC,交AC于点G,在GD的延长线上取点E,使DE=DB,连接AE、CD.
(1)求证:△AGE≌DAC;
(2)过点E作EF∥DC,交BC于点F,请你连接AF,并判断△AEF是怎样的三角形,试证明你的结论.
分析:(1)根据已知等边三解形的性质可推出△ADG是等边三角形,从而再利用SAS判定△AGE≌△DAC;
(2)连接AF,由已知可得四边形EFCD是平行四边形,从而得到EF=CD,∠DEF=∠DCF,由(1)知△AGE≌△DAC得到AE=CD,∠AED=∠ACD,从而可得到EF=AE,∠AEF=60°,所以△AEF为等边三角形.
解答:证明:(1)连接DF,AF,
∵△ABC是等边三角形,
∴AB=AC=BC,∠BAC=∠ABC=∠ACB=60°.
∵EG∥BC,
∴∠ADG=∠ABC=60°∠AGD=∠ACB=60°.
∴△ADG是等边三角形.
∴AD=DG=AG.
∵DE=DB,
∴EG=AB.
∴GE=AC.
∵EG=AB=CA,
∴∠AGE=∠DAC=60°,AG=DA,
∴△AGE≌△DAC.

(2)连接AF,△AEF为等边三角形,
∵DG∥BC,EF∥DC,
∴四边形EFCD是平行四边形,
∴EF=CD,∠DEF=∠DCF,
由(1)知△AGE≌△DAC,
∴AE=CD,∠AED=∠ACD.
∵EF=CD=AE,∠AED+∠DEF=∠ACD+∠DCB=60°,
∴△AEF为等边三角形.
点评:此题主要考查学生对全等三角形的判定,等边三角形的性质及判定的理解及运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2009•裕华区二模)已知,如图△ABC是等边三角形,将一块含30°角的直角三角板DEF如图放置,让△ABC在BC所在的直线l上向左平移.当点B与点E重合时,点A恰好落在三角板的斜边DF上的M点,点C在N点位置上(假定AB、AC与三角板斜边的交点为G、H)
问:(1)在△ABC平移过程中,通过测量CH、CF的长度,猜想CH、CF满足的数量关系;
(2)在△ABC平移过程中,通过测量BE、AH的长度,猜想BE.AH满足的数量关系;
(3)证明(2)中你的猜想.(证明不得含有图中未标示的字母)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图△ABC是边长为4的等边三角形,点P、Q分别从A、C两点同时出发,速度为每秒1个单位长度,B与原点重合,PQ交AC于D.
(1)写出点A的坐标
(2,2
3
(2,2
3

(2)当△DCQ为等腰三角形时,求t的值;
(3)若△PCQ的面积为S,P、Q运动的时间为t秒,求S与t的函数关系式,并求S的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知,如图△ABC是等边三角形,将一块含30°角的直角三角板DEF如图放置,让△ABC在BC所在的直线l上向左平移.当点B与点E重合时,点A恰好落在三角板的斜边DF上的M点,点C在N点位置上(假定AB、AC与三角板斜边的交点为G、H)
问:(1)在△ABC平移过程中,通过测量CH、CF的长度,猜想CH、CF满足的数量关系;
(2)在△ABC平移过程中,通过测量BE、AH的长度,猜想BE.AH满足的数量关系;作业宝
(3)证明(2)中你的猜想.(证明不得含有图中未标示的字母)

查看答案和解析>>

科目:初中数学 来源:2009年河南省中招数学模拟试卷(1)(解析版) 题型:解答题

(2005•成都)已知:如图△ABC是等边三角形,过AB边上的点D作DG∥BC,交AC于点G,在GD的延长线上取点E,使DE=DB,连接AE、CD.
(1)求证:△AGE≌△DAC;
(2)过点E作EF∥DC,交BC于点F,请你连接AF,并判断△AEF是怎样的三角形,试证明你的结论.

查看答案和解析>>

同步练习册答案