·ÖÎö ̽Ë÷·¢ÏÖ£ºÓò»Í¬µÄ·½·¨¼ÆËãͼ1µÄÃæ»ý£¬¿ÉÒÔ·¢ÏÖa¡¢b¡¢c¼äÓÐʲôÊýÁ¿¹ØÏµ£»
³¢ÊÔÓ¦Ó㺢ÙÓÉÒÑÖªÌõ¼þºÍ̽Ë÷·¢ÏֵĹæÂÉ£¬½áºÏÈý½ÇÐεÄÖܳ¤¼°Ãæ»ýµÄ¶¨ÒåÇó½â£»
¢Ú¸ù¾ÝÌâÒâµÃµ½·½³Ì×é$\left\{\begin{array}{l}{c+a=144}\\{c-a=1}\end{array}\right.$£¬$\left\{\begin{array}{l}{c+a=72}\\{c-a=2}\end{array}\right.$£¬$\left\{\begin{array}{l}{c+a=48}\\{c-a=3}\end{array}\right.$£¬$\left\{\begin{array}{l}{c+a=36}\\{c-a=4}\end{array}\right.$£¬$\left\{\begin{array}{l}{c+a=24}\\{c-a=6}\end{array}\right.$£¬$\left\{\begin{array}{l}{c+a=18}\\{c-a=8}\end{array}\right.$£¬$\left\{\begin{array}{l}{c+a=16}\\{c-a=9}\end{array}\right.$£¬½â·½³Ì×é¼´¿ÉÇó½â£®
½â´ð ½â£ºÌ½Ë÷·¢ÏÖ£º
ͼ1µÄÃæ»ý=$\frac{1}{2}$ab¡Á2+$\frac{1}{2}$c2=ab+$\frac{1}{2}$c2£»
ͼ1µÄÃæ»ý=$\frac{1}{2}$£¨a+b£©£¨a+b£©=$\frac{1}{2}$£¨a+b£©2£»
ab+$\frac{1}{2}$c2=$\frac{1}{2}$£¨a+b£©2£¬
ab+$\frac{1}{2}$c2=$\frac{1}{2}$£¨a2+2ab+b2£©£¬
$\frac{1}{2}$c2=$\frac{1}{2}$a2+$\frac{1}{2}$b2£¬
a2+b2=c2£»
³¢ÊÔÓ¦Óãº
¢ÙÒÀÌâÒâÓÐ$\left\{\begin{array}{l}{b-a=2}\\{{a}^{2}+{b}^{2}=1{0}^{2}}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{ab=48}\\{a+b=14}\end{array}\right.$£¬$\left\{\begin{array}{l}{ab=48}\\{a+b=-14}\end{array}\right.$£¨ÉáÈ¥£©£®
¹Ê´ËÈý½ÇÐεÄÖܳ¤ÊÇ14+10=24£¬Ãæ»ýÊÇ48¡Â2=24£»
¢ÚÒÀÌâÒâÓÐ
$\left\{\begin{array}{l}{c+a=144}\\{c-a=1}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{c=72.5}\\{a=71.5}\end{array}\right.$£¨ÉáÈ¥£©£»
$\left\{\begin{array}{l}{c+a=72}\\{c-a=2}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{c=37}\\{a=35}\end{array}\right.$£»
$\left\{\begin{array}{l}{c+a=48}\\{c-a=3}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{c=25.5}\\{a=22.5}\end{array}\right.$£¨ÉáÈ¥£©£»
$\left\{\begin{array}{l}{c+a=36}\\{c-a=4}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{c=20}\\{a=16}\end{array}\right.$£»
$\left\{\begin{array}{l}{c+a=24}\\{c-a=6}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{c=15}\\{a=9}\end{array}\right.$£»
$\left\{\begin{array}{l}{c+a=18}\\{c-a=8}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{c=13}\\{a=5}\end{array}\right.$
$\left\{\begin{array}{l}{c+a=16}\\{c-a=9}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{c=12.5}\\{a=3.5}\end{array}\right.$£¨ÉáÈ¥£©£®
¹ÊËùÓÐÂú×ãÌõ¼þµÄa¡¢cµÄֵΪa=35£¬c=37£»a=16£¬c=20£» a=5£¬c=13£»a=9£¬c=15£®
µãÆÀ ¿¼²éÁ˹´¹É¶¨ÀíµÄÖ¤Ã÷£¬Èý½ÇÐεÄÖܳ¤¼°Ãæ»ý£¬ÆäÖÐÄѵãÊǵڣ¨3£©ÎÊ£¬¹Ø¼üÊǵõ½¹ØÓÚa£¬cµÄ·½³Ì×飮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 2.5¡Á106 | B£® | 2.5¡Á10-6 | C£® | 2.5¡Á107 | D£® | 2.5¡Á10-7 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1 | B£® | 2 | C£® | 3 | D£® | 4 |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com