精英家教网 > 初中数学 > 题目详情

已知:如图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.试解答下列问题:
(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关______;
(2)仔细观察,在图2中“8字形”的个数:______个;
(3)在图2中,若∠D=40°,∠B=36°,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.利用(1)的结论,试求∠P的度数;
(4)如果图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D、∠B之间存在着怎样的数量关系.(直接写出结论即可)

解:(1)在△AOD中,∠AOD=180°-∠A-∠D,
在△BOC中,∠BOC=180°-∠B-∠C,
∵∠AOD=∠BOC(对顶角相等),
∴180°-∠A-∠D=180°-∠B-∠C,
∴∠A+∠D=∠B+∠C;

(2)交点有点M、O、N,
以M为交点有1个,为△AMD与△CMP,
以O为交点有4个,为△AOD与△COB,△AOM与△CON,△AOM与△COB,△CON与△AOD,
以N为交点有1个,为△ANP与△CNB,
所以,“8字形”图形共有6个;

(3)∵∠D=40°,∠B=36°,
∴∠OAD+40°=∠OCB+36°,
∴∠OCB-∠OAD=4°,
∵AP、CP分别是∠DAB和∠BCD的角平分线,
∴∠DAM=∠OAD,∠PCM=∠OCB,
又∵∠DAM+∠D=∠PCM+∠P,
∴∠P=∠DAM+∠D-∠PCM=(∠OAD-∠OCB)+∠D=×(-4°)+40°=38°;


(4)根据“8字形”数量关系,∠OAD+∠D=∠OCB+∠B,∠DAM+∠D=∠PCM+∠P,
所以,∠OCB-∠OAD=∠D-∠B,∠PCM-∠DAM=∠D-∠P,
∵AP、CP分别是∠DAB和∠BCD的角平分线,
∴∠DAM=∠OAD,∠PCM=∠OCB,
(∠D-∠B)=∠D-∠P,
整理得,2∠P=∠B+∠D.
分析:(1)利用三角形的内角和定理表示出∠AOD与∠BOC,再根据对顶角相等可得∠AOD=∠BOC,然后整理即可得解;
(2)根据“8字形”的结构特点,根据交点写出“8字形”的三角形,然后确定即可;
(3)根据(1)的关系式求出∠OCB-∠OAD,再根据角平分线的定义求出∠DAM-∠PCM,然后利用“8字形”的关系式列式整理即可得解;
(4)根据“8字形”用∠B、∠D表示出∠OCB-∠OAD,再用∠D、∠P表示出∠DAM-∠PCM,然后根据角平分线的定义可得∠DAM-∠PCM=(∠OCB-∠OAD),然后整理即可得证.
点评:本题考查了三角形内角和定理,角平分线的定义,多边形的内角和定理,对顶角相等的性质,整体思想的利用是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

28、已知:如图1,线段AB、CD相交于点O,连接AD、CB、如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:
(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:
∠A+∠D=∠B+∠C

(2)在图2中,若∠D=40°,∠B=30°,试求∠P的度数;(写出解答过程)
(3)如果图2中∠D和∠B为任意角,其他条件不变,试写出∠P与∠D、∠B之间数量关系.(直接写出结论即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

作图(不写作法,保留作图痕迹)
(1)如图甲,已知∠MON,求作射线OP,使∠MOP=∠NOP;
(2)已知:如图乙,线段a和∠a,求作:△ABC,使BC=a,∠BCA=∠a.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图的两线段a和b,求作一个等腰△ABC,使它的底边BC等于a,底边BC上的高AD等于b(尺规作图,不能在原图上作,不写作法,要保留作图痕迹)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图∠α,∠β和线段a.画一个三角形使它的两个角等于已知∠α,∠β,一边等于已知线段a.(保留作图痕迹)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.试解答下列问题:
(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关
∠A+∠D=∠B+∠C
∠A+∠D=∠B+∠C

(2)仔细观察,在图2中“8字形”的个数:
6
6
个;
(3)在图2中,若∠D=40°,∠B=36°,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.利用(1)的结论,试求∠P的度数;
(4)如果图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D、∠B之间存在着怎样的数量关系.(直接写出结论即可)

查看答案和解析>>

同步练习册答案