精英家教网 > 初中数学 > 题目详情

已知如图,正方形ABCD中,E为DC上一点,连接BE,作CF⊥BE于P交AD于F点,若恰好使得AP=AB.求证:E为DC中点.

证明:过A作AM⊥BE与M.
∴∠AMB=∠AMP=90°,
∴∠1+∠3=90°
∵BE⊥CF
∴∠4=90°
∴∠AMB=∠4
∵四边形ABCD是正方形,
∴AB=BC=CD,∠ABC=90°.
即∠1+∠2=90°,
∴∠2=∠3
∵在△ABM和△BCP中,

∴△ABM≌△BCP(AAS)
∴AM=BP
∵AP=AB,AM⊥BE,
∴BM=BP=AM.
∵∠2=∠3,∠AMB=∠BCE,
∴△ABM∽△BEC

∵BC=DC
∴CE=DC.
∴E为DC中点.
分析:过A作AM⊥BE与M,根据条件可以得出△ABM≌△BCP,可以得出AP=AB,进而可以得出△ABM∽△BEC由相似三角形的性质就得出CE=DC,从而可以得出结论.
点评:本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,相似三角形的判定及性质的运用,解答时正确作出辅助线是解答本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(1997•重庆)已知如图,正方形ABCD中,E为DC上一点,连接BE,作CF⊥BE于P交AD于F点,若恰好使得AP=AB.求证:E为DC中点.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知如图,正方形AEDG的两个顶点A、D都在⊙O上,AB为⊙O直径,射线ED与⊙O的另一个交点为 C,试判断线段AC与线段BC的关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知如图,正方形ABCD的边长为6,菱形EFGH的三个顶点E,G,H分别在正方形ABCD边AB,CD,DA上,AH=2,连接CF.过点F作FM垂直于DC,交直线DC于M.
(1)如果DG=2,那么FM=
2
2
 (画出对应图形会变得更简单!)
(2)当E,G在正方形边上移动时,猜测FM的值是否发生改变,并证明你的结论.
(3)设DG=x,用含x的代数式表示△FCG的面积S;判断S能否等于1,若能求x的值,若不能请说明理由.
(温馨提示:不要忘记顶点E,G,H分别在正方形ABCD边AB,CD,DA上哦!)

查看答案和解析>>

科目:初中数学 来源: 题型:

.已知如图,正方形AEDG的两个顶点AD都在⊙O 上,AB为⊙O直径,射线线ED与⊙O的另一个交点为 C,试判断线段AC与线段BC的关系.

 

 

 

查看答案和解析>>

科目:初中数学 来源:2011-2012年北京四中九年级第一学期期中考试数学卷 题型:解答题

.已知如图,正方形AEDG的两个顶点AD都在⊙O上,AB为⊙O直径,射线线ED与⊙O的另一个交点为C,试判断线段AC与线段BC的关系.

查看答案和解析>>

同步练习册答案