| A. | $\frac{1}{5}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
分析 连接OC,过O作OH⊥CE于E,过D作DF⊥AB于F,根据垂径定理得到CH=$\frac{1}{2}$CD=$\frac{9}{2}$,根据相似三角形的性质得到OC=$\frac{3\sqrt{10}}{2}$,OE=$\frac{\sqrt{10}}{2}$,DF=$\frac{6\sqrt{10}}{5}$,EF=$\frac{2\sqrt{10}}{5}$,如何根据三角函数的定义即刻得到结论.
解答
解:连接OC,过O作OH⊥CE于E,过D作DF⊥AB于F,
∴CH=$\frac{1}{2}$CD=$\frac{9}{2}$,
∵AB为⊙O的直径,点C为$\widehat{AB}$的中点,
∴∠EOC=90°,
∴OC2=CH•CE=$\frac{9}{2}$×5=$\frac{45}{2}$,
∴OC=$\frac{3\sqrt{10}}{2}$,∴OE=$\frac{\sqrt{10}}{2}$,
∵DF⊥AB,OC⊥AB,
∴DF∥OC,
∴△OCE∽△DFE,
∴$\frac{OC}{DF}$=$\frac{OE}{EF}$=$\frac{CE}{DE}$,
∴DF=$\frac{6\sqrt{10}}{5}$,EF=$\frac{2\sqrt{10}}{5}$,
∴BF=$\frac{12\sqrt{10}}{5}$,
∴tan∠B=$\frac{DF}{BF}$=$\frac{1}{2}$,
故选D.
点评 本题考查了圆周角定理,圆心角、弧、弦的关系,相似三角形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 0既不是正数,也不是负数,所以0不是有理数 | |
| B. | 在-3与-1之间仅有一个有理数 | |
| C. | 一个负数的倒数一定还是负数 | |
| D. | 一个数的绝对值越大,表示它的点在数轴上越靠右 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com