精英家教网 > 初中数学 > 题目详情

当x________时,多项式x2+4x+6的最小值是________.

=-2    2
分析:设y=x2+4x+6,将其利用配方法转化为顶点式,然后利用顶点求多项式x2+4x+6的最小值.
解答:设y=x2+4x+6;
则y=(x+2)2+2;
∴当x=-2时,y最小值=2.
故答案为:2、-2.
点评:本题考查了二次函数的最值.解答该题时,利用了配方法求二次函数的最值.
练习册系列答案
相关习题

科目:初中数学 来源:数学教研室 题型:022

当k=__________时,多项式x2-3kxy-3y2xy-8中不含xy项

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

当x=________时,多项式x2-2x+1有最小值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

当k=______时,多项式x2+(k-1)xy-3y2-2xy-5中不含xy项.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

当x______时,多项式x2+4x+6的最小值是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

当k=______时,多项式x2-3kxy-3y2-
1
3
xy-8
中不含xy项.

查看答案和解析>>

同步练习册答案