精英家教网 > 初中数学 > 题目详情
(2012•南浔区二模)北京时间2011年3月11日13时46分,日本发生9.0级特大地震,某日资公司为筹集善款,对其日本原产品进行大幅度销售,有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:
A型利润 B型利润
甲店 200 170
乙店 160 150
(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W关于x的函数关系式,并求出x的取值范围;
(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;
(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A,B型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?
分析:(1)根据所有产品数量及所给产品数量分别得到甲店B型商品,乙店A型商品,乙店B型商品的数量,那么总利润等于每件相应商品的利润×相应件数之和;根据各个店面的商品的数量为非负数可得自变量的取值;
(2)让(1)中的代数式≥17560,结合(1)中自变量的取值可得相应的分配方案;
(3)根据让利后A型产品的每件利润仍高于甲店B型产品的每件利润可得a的取值,结合(1)得到相应的总利润,根据a的不同取值得到利润的函数应得到的最大值的方案即可.
解答:解:依题意,甲店B型产品有(70-x)件,乙店A型有(40-x)件,B型有(x-10)件,则
(1)W=200x+170(70-x)+160(40-x)+150(x-10)=20x+16800.
x≥0
70-x≥0
40-x≥0
x-10≥0
解得10≤x≤40.
(2)由W=20x+16800≥17560,∴x≥38.∴38≤x≤40,x=38,39,40.∴有三种不同的分配方案.
①x=38时,甲店A型38件,B型32件,乙店A型2件,B型28件.
②x=39时,甲店A型39件,B型31件,乙店A型1件,B型29件.
③x=40时,甲店A型40件,B型30件,乙店A型0件,B型30件.
(3)依题意:W=(200-a)x+170(70-x)+160(40-x)+150(x-10)=(20-a)x+16800.
①当0<a<20时,x=40,即甲店A型40件,B型30件,乙店A型0件,B型30件,能使总利润达到最大.
②当a=20时,10≤x≤40,符合题意的各种方案,使总利润都一样.
③当20<a<30时,x=10,即甲店A型10件,B型60件,乙店A型30件,B型0件,能使总利润达到最大.
点评:考查一次函数的应用;得到分配给甲乙两店的不同型号的产品的数量是解决本题的突破点;得到总利润的关系式是解决本题的关键;根据a的不同取值得到相应的最大利润是解决本题的难点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•南浔区二模)如图,点A(a,b)是抛物线y=
1
2
x2
上一动点,OB⊥OA交抛物线于点B(c,d).当点A在抛物线上运动的过程中(点A不与坐标原点O重合),以下结论:①ac为定值;②ac=-bd;③△AOB的面积为定值;④直线AB必过一定点.正确的有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•南浔区二模)如图,将1~2025这2025个自然数按图中规律分别排列在网格中,除对角线AB经过的45个数外,其它的数被分成两部分,对角线AB右上方的990个数之和记为S1,对角线AB左下方的990个数之和记为S2.则S1-S2=
-1012
-1012

查看答案和解析>>

科目:初中数学 来源:2011年浙江省湖州市吴兴区初中学业考试数学模拟试卷(解析版) 题型:解答题

(2012•南浔区二模)计算:+(-1)2009+(π-2)

查看答案和解析>>

科目:初中数学 来源:2009年北京市东城区中考数学一模试卷(解析版) 题型:解答题

(2012•南浔区二模)计算:+(-1)2009+(π-2)

查看答案和解析>>

同步练习册答案