精英家教网 > 初中数学 > 题目详情
13.如图,在平面直角坐标系中,点A(-2,0),等边△AOB经过平移或轴对称或旋转都可以得到△OCD.
(1)填空:
①△AOB沿x轴向右平移得到△OCD,则平移的距离是2个单位长度;
②△AOB与△OCD关于某直线对称,则对称轴是y轴;
③△AOB绕原点O顺时针旋转得到△OCD,则旋转角度可以是120度;
(2)连接AD,请探索AD与CD的位置关系.

分析 (1)平移的距离为对应点连线的长度,对称轴为对应点连线的垂直平分线,旋转角为对应点与旋转中心连线的夹角的大小,据此判断即可;
(2)连接AD后可得底角为30°的等腰三角形AOD,进而可得∠ADC为直角,再根据勾股定理求得直角边AD的长.

解答 解:(1)△AOB沿x轴向右平移得到△OCD,根据AO=2可知,平移的距离是2个单位长度;
△AOB与△COD关于直线对称,根据线段AC被y轴垂直平分可知,对称轴是y轴;
△AOB绕原点O顺时针旋转得到△DOC,根据∠BOC=180°-∠AOB=120°可知,旋转角度可以是120°;
故答案为:2;y轴;120

(2)由AO=DO,∠COD=60°可得,∠OAD=∠ODA=30°,
∴∠ADC=30°+60°=90°,
∴AD⊥CD.

点评 此题是几何变换综合题,主要考查了图形的基本变换与坐标以及等边三角形的性质,解题时需要注意:平移的距离等于对应点连线的长度,对称轴为对应点连线的垂直平分线,旋转角为对应点与旋转中心连线的夹角的大小.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

3.如图,在四边形ABCD中,AD∥BC,对角线AC⊥BD,若AD=6,BC=14,则四边形ABCD面积的最大值是100.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.按照如下步骤计算:6-2÷($\frac{1}{4}$+$\frac{1}{12}$-$\frac{7}{18}$-$\frac{1}{36}$).
(1)计算:($\frac{1}{4}$+$\frac{1}{12}$-$\frac{7}{18}$-$\frac{1}{36}$)÷6-2
(2)根据两个算式的关系,直接写出6-2÷($\frac{1}{4}$+$\frac{1}{12}$-$\frac{7}{18}$-$\frac{1}{36}$)的结果.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.(1)问题背景:
如图①,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是BC、CD上的点,且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.
小明同学探究此问题的方法是,延长FD到点G,使DG=BE,连接AG,先证明△ABE≌ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是EF=BE+DF;

(2)探索延伸:
如图②,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=$\frac{1}{2}$∠BAD,上述结论是否仍然成立,请说明理由;
(3)实际应用:
如图③,在某次军事演习中,舰艇甲在指挥中心O北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进,2小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,当∠EOF=70°时,两舰艇之间的距离是280海里.
(4)能力提高:
如图④,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°.若BM=1,CN=3,则MN的长为$\sqrt{10}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.为了保护生态平衡,绿化环境,国家大力鼓励“退耕还林、还草”,其补偿政策如表(一):某农户承包了一片山坡地种树种草,所得到的国家的补偿如表(二).
表(一)种树、种草每亩每年补粮补钱情况表
种树种草
补粮150千克100千克
补钱200元150元
表(二)该农户收到乡政府下发的当种树种草亩数及年补偿通知单
种树、种草补粮补钱
30亩4000千克5500元
(1)该农户当年种树、种草各多少亩?
(2)若今年该农户又扩展40亩山坡地种树种草,要想年终政府补钱不少于12000元,至少需要安排多少亩山坡地种树?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.目前,我市正在积极创建文明城市,交通部门一再提醒司机:为了安全,请勿超速,并再进一步完善各类监测系统,如图,在某公路直线路段MN内限速60千米/小时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了5秒钟,已知∠CAN=45°,∠CBN=60°,BC=200米,此车超速了吗?请说明理由.(参考数据:$\sqrt{2}$=1.41,$\sqrt{3}$=1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.
(1)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;
(2)当t为何值时,△DEF为直角三角形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.将两张完全相同的矩形纸片ABCD、FBED按如图方式放置,BD为重合的对角线.重叠部分为四边形DHBG,
(1)试判断四边形DHBG为何种特殊的四边形,并说明理由;
(2)若AB=8,AD=4,求四边形DHBG的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.二次函数y=x2-2x-3的开口方向是向上.

查看答案和解析>>

同步练习册答案