精英家教网 > 初中数学 > 题目详情

如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=5,AC=6.过点D作DE∥AC交BC的延长线于点E.求△BDE的周长.

解:在菱形ABCD中,对角线AC与BD相交于点O,AB=5,AC=6,
∴AO=AC=3,且AC⊥BD,
∵OA=3,DO=4
∴AD==5,BO=4,
∴BD=8,
∵DE∥AC,且AD∥CE
∴四边形ACED为平行四边形,
∴DE=AC=6,CE=AD=5,
∴BE=10,
∴△BDE的周长为=6+8+10=24.
分析:先根据菱形对侥幸互相垂直平分的性质得出AO及BO的长,再由平行四边形的判定定理判断出四边形ACED是平行四边形,根据平行四边形的对边相等即可得出结论.
点评:本题考查的是菱形的性质及平行四边形的判定与性质,熟知菱形的对角线互相垂直平分的性质是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图:在菱形ABCD中,AC=6,BD=8,则菱形的边长为(  )
A、5B、10C、6D、8

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在菱形ABCD中,∠ABC=60°,E为AB边的中点,P为对角线BD上任意一点,AB=4,则PE+PA的最小值为
 
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•河南)如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点.点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.
(1)求证:四边形AMDN是平行四边形;
(2)填空:①当AM的值为
1
1
时,四边形AMDN是矩形;
           ②当AM的值为
2
2
时,四边形AMDN是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•攀枝花)如图,在菱形ABCD中,DE⊥AB于点E,cosA=
35
,BE=4,则tan∠DBE的值是
2
2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在菱形ABCD中,AE⊥BC,垂足为F,EC=1,∠B=30°,求菱形ABCD的周长.

查看答案和解析>>

同步练习册答案