精英家教网 > 初中数学 > 题目详情
精英家教网如图,在正方形ABCD中,M、N两点分别是BC、CD边上的点,若△AMN是边长为
2
的等边三角形,则正方形的边长为
 
分析:由题意求得△ADN≌△ABM,得到MC=NC,则在直角△AND中得:AD2+(AD-1)2=(
2
)
2
求得AD从而求得.
解答:解:∵由题意AN=AM,AB=AD,∠B=∠D,
∴△ADN≌△ABM,
∴BM=DN,
∴MC=NC,
由题意知∠C=90°,
∴∠CNM=∠CMN=45°,
∵MN=
2

∴MC=NC=1,
则在直角△AND中得:AD2+(AD-1)2=(
2
)
2

解得AD=
1+
3
2

故答案为:
1+
3
2
点评:主要考查了直角坐标系的建立和运用以及作图求两点之间的最短距离,该题中还涉及到了勾股定理的运用.此类题型是个重点也是难点,需要掌握.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图:在正方形网格上有△ABC,△DEF,说明这两个三角形相似,并求出它们的相似比.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线精英家教网,交BC于点E.
(1)求证:点E是边BC的中点;
(2)若EC=3,BD=2
6
,求⊙O的直径AC的长度;
(3)若以点O,D,E,C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图,在Rt△ABC中,∠BAC=90°,AD=CD,点E是边AC的中点,连接DE,DE的延长线与边BC相交于点F,AG∥BC,交DE于点G,连接AF、CG.
(1)求证:AF=BF;
(2)如果AB=AC,求证:四边形AFCG是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•陕西)如图,正三角形ABC的边长为3+
3

(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);
(2)求(1)中作出的正方形E′F′P′N′的边长;
(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6
2
,求另一直角边BC的长.

查看答案和解析>>

同步练习册答案