D
分析:根据圆周角定理、等腰三角形的判定与性质等,作出辅助线,根据有关性质和定理对每一结论进行证明即可得出答案.
解答:①∵AB=AD,
∴弧AB=弧AD,∠ADB=∠ABD.
∵∠ACB=∠ADB,∠ACD=∠ABD,
∴∠ACB=∠ADB=∠ABD=∠ACD.
∴∠ADB=(180°-∠BAD)÷2=90°-∠DFC.
∴∠ADB+∠DFC=90°,即∠ACD+∠DFC=90°,
∴CD⊥DF,
∴∠FDC=90°,
∴∠ADC>90°,
∴线段AC不为⊙O的直径,
∴①错误,②正确;
③过F作FG⊥BC,

∵∠ACB=∠ADB,
又∠BFC=∠BAD,
∴∠FBC=∠ABD=∠ADB=∠ACB.
∴FB=FC.
∴FG平分BC,G为BC中点,∠GFC=

∠BAD=∠DFC.
∴△FGC≌△DFC(∠GFC=∠DFC,FC=FC,∠ACB=∠ACD).
∴CD=GC=

BC.
∴BC=2CD,
∴③正确;
④∵∠BFC=∠BAD,
∠AFB=180°-∠BFC,
∠BCD=180°-∠BAD,
∴∠AFB=∠BCD
∴④正确;
其中正确的个数为3个.
故选D.
点评:本题考查了圆周角定理;用到的知识点为圆周角定理、等腰三角形的判定与性质等,解题的关键是作出辅助线根据有关性质和定理对每一结论进行证明.