精英家教网 > 初中数学 > 题目详情

如图,四边形ABCD内接于⊙O,对角线AC与BD相交于点E、F在AC上,AB=AD,∠BFC=∠BAD=2∠DFC,下列结论:
①线段AC为⊙O的直径;②CD⊥DF;③BC=2CD;④∠AFB=∠BCD
其中正确的个数为


  1. A.
    0个
  2. B.
    1个
  3. C.
    2个
  4. D.
    3个
D
分析:根据圆周角定理、等腰三角形的判定与性质等,作出辅助线,根据有关性质和定理对每一结论进行证明即可得出答案.
解答:①∵AB=AD,
∴弧AB=弧AD,∠ADB=∠ABD.
∵∠ACB=∠ADB,∠ACD=∠ABD,
∴∠ACB=∠ADB=∠ABD=∠ACD.
∴∠ADB=(180°-∠BAD)÷2=90°-∠DFC.
∴∠ADB+∠DFC=90°,即∠ACD+∠DFC=90°,
∴CD⊥DF,
∴∠FDC=90°,
∴∠ADC>90°,
∴线段AC不为⊙O的直径,
∴①错误,②正确;
③过F作FG⊥BC,
∵∠ACB=∠ADB,
又∠BFC=∠BAD,
∴∠FBC=∠ABD=∠ADB=∠ACB.
∴FB=FC.
∴FG平分BC,G为BC中点,∠GFC=∠BAD=∠DFC.
∴△FGC≌△DFC(∠GFC=∠DFC,FC=FC,∠ACB=∠ACD).
∴CD=GC=BC.
∴BC=2CD,
∴③正确;
④∵∠BFC=∠BAD,
∠AFB=180°-∠BFC,
∠BCD=180°-∠BAD,
∴∠AFB=∠BCD
∴④正确;
其中正确的个数为3个.
故选D.
点评:本题考查了圆周角定理;用到的知识点为圆周角定理、等腰三角形的判定与性质等,解题的关键是作出辅助线根据有关性质和定理对每一结论进行证明.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC与BD互相垂直平分于点O,设AC=2a,BD=2b,请推导这个四边形的性质.(至少3条)
(提示:平面图形的性质通常从它的边、内角、对角线、周长、面积等入手.)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC、BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+CF.
(1)求证:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,四边形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD为正方形,E是BC的延长线上的一点,且AC=CE,求∠DAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.

(I)求证:AE=EF;
(Ⅱ)若将条件中的“点E是BC的中点”改为“E是BC上任意一点”,其余条件不变,则结论AE=EF还成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案