精英家教网 > 初中数学 > 题目详情
(2004•茂名)已知:如图,延长⊙O的直径AB到点C,过点C作⊙O的切线CE与⊙O相切于点D,AE⊥EC交⊙O于点F,垂足为点E,连接AD.
(1)若CD=2,CB=1,求⊙O直径AB的长;
(2)求证:AD2=AC•AF.

【答案】分析:(1)根据切割线定理可以求出AC的长,从而求出AB的长;
(2)可以通过证明△AFD∽△ADC得出AD2=AC×AF.
解答:(1)解:∵CD与⊙O相切,
∴CD2=CB•CA=CB•(CB+AB),
又∵CD=2,CB=1,
∴4=1•(1+AB),
∴AB=3;

(2)证法一:如图,连接FD、OD,
在△AFD和△ADC中,
∵EC与⊙O相切于点D,
∴OD⊥EC,
∠1=∠ADC  ①
又∵AE⊥EC,
∴AE∥OD,
∴∠4=∠2,
而∠2=∠3,
∴∠3=∠4  ②
由①、②可知△AFD∽△ADC,

∴AD2=AC•AF;
证法二:如图,连接FD、BD,
在△AFD和△ADC中,
∵EC与⊙O相切于点D,
∴∠5=∠ADE,∠1=∠ADC  ①
又∠AED=∠ADB=90°,
∴∠3=∠4 ②
由①、②可知△AFD∽△ADC,

∴AD2=AC•AF.
点评:本题综合考查了切线的性质,相似三角形的判定和性质,希望能将所学知识融汇贯通.
练习册系列答案
相关习题

科目:初中数学 来源:2004年全国中考数学试题汇编《二次函数》(05)(解析版) 题型:解答题

(2004•茂名)已知:如图,在直角坐标系中,以点M(1,0)为圆心、直径AC为的圆与y轴交于A、D两点.
(1)求点A的坐标;
(2)设过点A的直线y=x+b与x轴交于点B.探究:直线AB是否⊙M的切线并对你的结论加以证明;
(3)在(2)的前提下,连接BC,记△ABC的外接圆面积为S1、⊙M面积为S2,若,抛物线y=ax2+bx+c经过B、M两点,且它的顶点到x轴的距离为h.求这条抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:2004年广东省茂名市中考数学试卷(解析版) 题型:解答题

(2004•茂名)已知:如图,在直角坐标系中,以点M(1,0)为圆心、直径AC为的圆与y轴交于A、D两点.
(1)求点A的坐标;
(2)设过点A的直线y=x+b与x轴交于点B.探究:直线AB是否⊙M的切线并对你的结论加以证明;
(3)在(2)的前提下,连接BC,记△ABC的外接圆面积为S1、⊙M面积为S2,若,抛物线y=ax2+bx+c经过B、M两点,且它的顶点到x轴的距离为h.求这条抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:2004年全国中考数学试题汇编《四边形》(07)(解析版) 题型:解答题

(2004•茂名)已知:如图,点E、F、G、H分别是梯形ABCD四条边上的中点,AD∥BC,AB=CD=EG=4.
(1)求梯形ABCD的周长;
(2)∠1与∠2是否相等?为什么?
(3)求证:四边形EFGH是菱形.

查看答案和解析>>

科目:初中数学 来源:2004年全国中考数学试题汇编《三角形》(08)(解析版) 题型:解答题

(2004•茂名)已知:△ABC的两边AB、BC的长是关于x的一元二次方程x2-(2k+2)x+k2+2k=0的两个实数根,第三边长为10.问当k为何值时,△ABC是等腰三角形?

查看答案和解析>>

科目:初中数学 来源:2004年广东省茂名市中考数学试卷(解析版) 题型:解答题

(2004•茂名)已知:如图,点E、F、G、H分别是梯形ABCD四条边上的中点,AD∥BC,AB=CD=EG=4.
(1)求梯形ABCD的周长;
(2)∠1与∠2是否相等?为什么?
(3)求证:四边形EFGH是菱形.

查看答案和解析>>

同步练习册答案