精英家教网 > 初中数学 > 题目详情
(2013•晋江市)将矩形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将矩形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.
(1)当m=3时,点B的坐标为
(3,4)
(3,4)
,点E的坐标为
(0,1)
(0,1)

(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.
(3)如图,若点E的纵坐标为-1,抛物线y=ax2-4
5
ax+10
(a≠0且a为常数)的顶点落在△ADE的内部,求a的取值范围.
分析:(1)根据点A、点D、点C的坐标和矩形的性质可以得到点B和点E的坐标;
(2)由折叠的性质求得线段DE和AE的长,然后利用勾股定理得到有关m的方程,求得m的值即可;
(3)过点E作EF⊥AB于F,EF分别与 AD、OC交于点G、H,过点D作DP⊥EF于点P,首先利用勾股定理求得线段DP的长,从而求得线段BF的长,再利用△AFG∽△ABD得到比例线段求得线段FG的长,最后求得a的取值范围.
解答:解:(1)点B的坐标为(3,4),点E的坐标为(0,1);

(2)点E能恰好落在x轴上.理由如下:∵四边形OABC为矩形,
∴BC=OA=4,∠AOC=∠DCE=90°,
由折叠的性质可得:DE=BD=OA-CD=4-1=3,AE=AB=OC=m,
如图1,假设点E恰好落在x轴上,在Rt△CDE中,由
勾股定理可得EC=
DE2-CD2
=
32-12
=2
2

则有OE=OC-CE=m-2
2

在Rt△AOE中,OA2+OE2=AE2
42+(m-2
2
)2=m2

解得m=3
2
…(7分)

(3)如图2,过点E作EF⊥AB于F,EF分别与AD、OC交于点G、H,过点D作DP⊥EF于点P,则EP=PH+EH=DC+EH=2,
在Rt△PDE中,由勾股定理可得DP=
DE2-EP2
=
32-22
=
5

BF=DP=
5

在Rt△AEF中,AF=AB-BF=m-
5
,EF=5,AE=m
∵AF2+EF2=AE2
(m-
5
)2+52=m2

解得m=3
5

AB=3
5
AF=2
5
,E(2
5
,-1)
∵∠AFG=∠ABD=90°,∠FAG=∠BAD
∴△AFG∽△ABD
AF
AB
=
FG
BD

2
5
3
5
=
FG
3

解得FG=2,
∴EG=EF-FG=3
∴点G的纵坐标为2,
y=ax2-4
5
ax+10=a(x-2
5
)2+(10-20a)

∴此抛物线的顶点必在直线x=2
5
上,
又∵抛物线y=ax2-4
5
ax+10
的顶点落在△ADE的内部,
∴此抛物线的顶点必在EG上,
∴-1<10-20a<2,
解得
2
5
<a<
11
20

故a的取值范围为
2
5
<a<
11
20
点评:本题考查了二次函数的综合知识,是一道有关折叠的问题,主要考查二次函数、矩形、相似形等知识,试题中贯穿了方程思想和数形结合的思想,请注意体会.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•晋江市)计算:2x3•x2等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•晋江市)已知关于x的方程2x-a-5=0的解是x=-2,则a的值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•晋江市)如图,在平面直角坐标系xOy中,一动直线l从y轴出发,以每秒1个单位长度的速度沿x轴向右平移,直线l与直线y=x相交于点P,以OP为半径的⊙P与x轴正半轴交于点A,与y轴正半轴交于点B.设直线l的运动时间为t秒.
(1)填空:当t=1时,⊙P的半径为
2
2
,OA=
2
2
,OB=
2
2

(2)若点C是坐标平面内一点,且以点O、P、C、B为顶点的四边形为平行四边形.
①请你直接写出所有符合条件的点C的坐标;(用含t的代数式表示)
②当点C在直线y=x上方时,过A、B、C三点的⊙Q与y轴的另一个交点为点D,连接DC、DA,试判断△DAC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•晋江市)已知∠1与∠2互余,∠1=55°,则∠2=
35
35
°.

查看答案和解析>>

同步练习册答案