18
分析:由△ABC为等腰直角三角形可知∠A=∠B=45°,则∠CEB=∠A+∠ACE=45°+∠ACE,∠ACF=∠ACE+∠ECF=∠ACE+45°,可证∠CEB=∠ACF,可证△ACF∽△BEC,利用对应边的比相等,可求AF•BE=AC•BC,再由直角三角形计算面积.
解答:∵△ABC为等腰直角三角形,∴∠A=∠B=45°,
∴∠CEB=∠A+∠ACE=45°+∠ACE,∠ACF=∠ACE+∠ECF=∠ACE+45°,
∴∠CEB=∠ACF,
∴△ACF∽△BEC,
∴

=

,即AF•BE=AC•BC=36,
∴△ABC的面积=

AC•BC=

×36=18.
故答案为:18.
点评:本题考查了等腰直角三角形的性质,相似三角形的判定与性质.关键是根据已知条件证明三角形相似.