精英家教网 > 初中数学 > 题目详情

如图,∠ACB=90゜,CA=CB,D为BC上一点,BM⊥AD于M,CN⊥AD于N.求证:BM+CN=AN.

证明:过C作CE⊥BM于E,
由题意可得出:∠CND=∠BMD,∠CDN=∠BDM,
∴∠NCD=∠MBD,
∵∠MBD+∠ECB=90°,∠ACN+∠BCN=90°,
∴∠ACN=∠BCE,
在△ACN和△BCE中

∴△ACN≌△BCE(AAS),
∴AN=BE,
∵∠CNM=∠AME=∠E=90°,
∴四边形CNME是矩形,
∴CN=EM,
∴BM+CN=BE=AN.
分析:首先根据已知得出∠ACN=∠BCE,进而证明△ACN≌△BCE(AAS),得出AN=BE,再得出四边形CNME是矩形,即可得出答案.
点评:此题主要考查了全等三角形的判定与性质,本题实质是间接地将CN补在BM后面的EM处是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,∠ACB=90°,AC=12,BC=5,AM=AC,BN=BC,则MN的长是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

10、如图,∠ACB=90°,AC=BC,AE⊥CE于E,BD⊥CE于D,AE=5cm,BD=2cm,则DE的长是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,∠ACB=90°,CD⊥AB,垂足为D,下列结论错误的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,∠ACB=90°,AC=BC,D为AB上一点,AE⊥CD,BF⊥CD,交CD延长线于F点.求证:BF=CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,∠ACB=90°,AC=AD,DE⊥AB,求证:△CDE是等腰三角形.

查看答案和解析>>

同步练习册答案