精英家教网 > 初中数学 > 题目详情
3.如图,在Rt△ABC中,∠C=90°,AC≠BC,点M是边AC上的动点.过点M作MN∥AB交BC于N,现将△MNC沿MN折叠,得到△MNP.若点P在AB上.则以MN为直径的圆与直线AB的位置关系是相交.

分析 如图连接PC交MN于D,取MN的中点O,连接OP,由题意PD<OP,推出圆心O到直线AB的距离小于⊙O的半径,推出以MN为直径的圆与直线AB相交.

解答 解:如图连接PC交MN于D,取MN的中点O,连接OP,

由题意PD<OP,
∴圆心O到直线AB的距离小于⊙O的半径,
∴以MN为直径的圆与直线AB相交,
故答案为相交;

点评 本题考查直线与圆的位置关系、平行线的性质、翻折变换等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

13.如图,点A,B,C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠BDC的度数为(  )
A.60°B.70°C.75°D.80°

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,已知正方形GFED的对角线DF在正方形ABCD的边DA上,连结AG,CE,并延长CE交AG于点H,若AD=4,DG=$\sqrt{2}$,则CE和CH的长分别是$\sqrt{10}$,$\frac{8\sqrt{10}}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.如图所示,在平面直角坐标系中,矩形ABCD的BC边落在y轴上,其它部分均在第一象限,双曲线y=$\frac{k}{x}$过点A,延长对角线CA交x轴于点E,以AD、AE为边作平行四边形AEFD,若平行四边形AEFD的面积为4,则k值为(  )
A.2B.4C.8D.12

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图1,在直角坐标系xOy中,直线l:y=kx+b交x轴、y轴于点E、F,点B的坐标是(2,2),过点B分别作x轴、y轴的垂线,垂足为A、C,点D是线段CO上的动点,连结BD,将△BCD沿直线BD折叠后得到△BC′D.

(1)当图1中的直线l经过点A,且k=-$\frac{\sqrt{3}}{3}$时(如图2).
①b=$\frac{2\sqrt{3}}{3}$,点C′的坐标为(2-$\sqrt{3}$,1)
②求点D由C到O的运动过程中,线段BC′扫过的图形与△OAF重叠部分的面积.
(2)当图1中的直线l经过点D,C′时(如图3),将△DOE沿直线DE折叠后得到△DO′E,连结O′C,O′O,若△DO′E与△CO′O相似,求k、b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.函数y=$\sqrt{2-x}$中自变量x的取值范围是(  )
A.x>2B.x≤2C.x≥2D.x≠2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.小红和小颖两名同学用分别标有数字:-1,2,-3,4四张卡片做游戏,(它们除了数字不同外,其余都相同).他们将卡片洗匀后,将标有数字的一面朝下放在桌面上,小红先随机抽取一张卡片数字为x,抽出的卡片不放回,小颖在剩下的3张卡片中随机抽取一张,记下数字为y
(1)请用画树状图或列表法表示出上述情况的所有等可能结果随机地从盒中抽出一张卡片,则抽出数字为“2”的卡片的概率是多少?
(2)若x与y的符号相同,小红获胜,若x与y两数符号不同,则小颖获胜,这个游戏对双方公平吗,为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.已知在Rt△BAC中,∠BAC=90°,AB=AC,点D为射线BC上一点(与点B不重合),过点C作CE⊥BC于点C,且CE=BD(点E与点A在射线BC同侧),连接AD,ED.

(1)如图1,当点D在线段BC上时,请直接写出∠ADE的度数.
(2)当点D在线段BC的延长线上时,依题意在图2中补全图形并判断(1)中结论是否成立?若成立,请证明;若不成立,请说明理由.
(3)在(1)的条件下,ED与AC相交于点P,若AB=2,直接写出CP的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.已知α、β是关于x的一元二次方程x2-(2m+3)x+m2=0的两个不相等的实数根,且满足$\frac{1}{α}$+$\frac{1}{β}$=1,则m的值是(  )
A.3B.-1C.3或-1D.-3或1

查看答案和解析>>

同步练习册答案