精英家教网 > 初中数学 > 题目详情
(2011•张家口一模)一次数学课上,老师让大家在一张长12cm、宽5cm的矩形纸片内,折出一个菱形.甲同学按照取两组对边中点的方法折出菱形EFGH(见方案一),乙同学沿矩形的对角线AC折出∠CAE=∠DAC,∠ACF=∠ACB的方法得到菱形AECF(见方案二),请你通过计算,比较这两种折法中,菱形面积较大的是( )

A.甲
B.乙
C.甲乙相等
D.无法判断
【答案】分析:方案一中,通过图可知四个小直角三角形全等,用矩形面积减去4个小直角三角形的面积,即可得菱形面积;方案二中,两个小直角三角形全等,设菱形边长为x,在直角三角形中利用勾股定理可求x,再利用底×高可求菱形面积.然后比较两者面积大小.
解答:解:方案一中,
∵E、F、G、H都是矩形ABCD的中点,
∴△HAE≌△HDG≌△FCG≌△FBE,
S△HAE=AE•AH=×AB×AD=××5××12=
S菱形EFGH=S矩形ABCD-4S△HAE=12×5-×4=30;

方案二中,设BE=x,则CE=AE=12-x,
∵AF=EC,AB=CD,AE=CF,
∴△ABE≌△CDF,
在Rt△ABE中,AB=5,BE=x,AE=12-x,由勾股定理得(12-x)2=52+x2,解得x=
S△ABE=BE•AB=××5=
S菱形EFGH=S矩形ABCD-2S△ABE=12×5-×2≈60-25=35>30,
故甲<乙.
故选B.
点评:本题考查了菱形面积的不同求法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•张家口一模)如图,直线l1⊥x轴于点(1,0),直线l2⊥x轴于点(2,0),直线l3⊥x轴于点(3,0),…直线ln⊥x轴于点(n,0).函数y=x的图象与直线l1,l2,l3,…ln分别交于点A1,A2,A3,…An;函数y=2x的图象与直线l1,l2,l3,…ln分别交于点B1,B2,B3,…Bn.如果△OA1B1的面积记作S1,四边形A1A2B2B1的面积记作S2,四边形A2A3B3B2的面积记作S3,…四边形An-1AnBnBn-1的面积记作Sn,那么S2012=
2011.5
2011.5

查看答案和解析>>

同步练习册答案