精英家教网 > 初中数学 > 题目详情
(2013•成都一模)如图,AB是⊙O的直径,点D、T是圆上的两点,且AT平分∠BAD,过点T作AD延长线的垂线PQ,垂足为C.若⊙O的半径为2,TC=
3
,则图中阴影部分的面积是
9
3
-4π
6
9
3
-4π
6
分析:连接OT、OD、过O作OM⊥AD于M,得到矩形OMCT,求出OM,求出∠OAM,求出∠AOT,求出OT∥AC,得出PC是圆的切线,得出等边三角形AOD,求出∠AOD,求出∠DOT,求出∠DTC=∠CAT=30°,求出DC,求出梯形OTCD的面积和扇形OTD的面积.相减即可求出答案.
解答:解:连接OT、OD、DT,过O作OM⊥AD于M,
∵OA=OT,AT平分∠BAC,
∴∠OTA=∠OAT,∠BAT=∠CAT,
∴∠OTA=∠CAT,
∴OT∥AC,
∵PC⊥AC,
∴OT⊥PC,
∵OT为半径,
∴PC是⊙O的切线,
∵OM⊥AC,AC⊥PC,OT⊥PC,
∴∠OMC=∠MCT=∠OTC=90°,
∴四边形OMCT是矩形,
∴OM=TC=
3

∵OA=2,
∴sin∠OAM=
3
2

∴∠OAM=60°,
∴∠AOM=30°
∵AC∥OT,
∴∠AOT=180°-∠OAM=120°,
∵∠OAM=60°,OA=OD,
∴△OAD是等边三角形,
∴∠AOD=60°,
∴∠TOD=120°-60°=60°,
∵PC切⊙O于T,
∴∠DTC=∠CAT=
1
2
∠BAC=30°,
∴tan30°=
DC
3

∴DC=1,
∴阴影部分的面积是S梯形OTCD-S扇形OTD=
1
2
×(2+1)×
3
-
60π×22
360
=
9
3
-4π
6

故答案为:
9
3
-4π
6
点评:本题考查了切线的性质和判定,解直角三角形,矩形的性质和判定,勾股定理,扇形的面积,梯形的性质等知识点的应用,主要考查学生运用性质进行推理和计算的能力,本题综合性比较强,有一定的难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•成都一模)为了实施教育均衡化,成都市决定采用市、区两级财政部门补贴相结合的方式为各级中小学添置多媒体教学设备,针对各个学校添置多媒体所需费用的多少市财政部门实施分类补贴措施如下表,其余费用由区财政部门补贴.
添置多媒体所需费用(万元) 补贴百分比
不大于10万元部分 80%
大于10万元不大于m万元部分 50%
大于m万元部分 20%
其中学校所在的区不同,m的取值也不相同,但市财政部门将m调控在20至40之间(20≤m≤40).试解决下列问题:
(1)若某学校的多媒体教学设备费用为18万元,求市、区两级财政部门应各自补贴多少;
(2)若某学校的多媒体教学设备费用为x万元,市财政部门补贴y万元,试分类列出y关于x的函数式;
(3)若某学校的多媒体教学设备费用为30万元,市财政部门补贴y万元的取值范围为12≤y≤24,试求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•成都一模)二次函数y=ax2+bx+c的值恒为正,则a,b,c应满足(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•成都一模)已知P1(-2,y1),P2(-1,y2),P3(2,y3)是反比例函数y=
2
x
的图象上的三点,则y1,y2,y3的大小关系是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•成都一模)如图,以AB为直径的⊙O是△ADC的外接圆,过点O作PO⊥AB,交AC于点E,PC的延长线交AB的延长线于点F,∠PEC=∠PCE.若△ADC是边长为1的等边三角形,则PC的长=
1
3
1
3

查看答案和解析>>

同步练习册答案