精英家教网 > 初中数学 > 题目详情

【题目】某商店销售一种销售成本为40元/千克的水产品,若按50元/千克销售,一个月可售出500千克,销售价每涨价1元,月销售量就减少10千克.

(1)写出月销售利润y与售价x之间的函数关系式.

(2)销售单价定为55元时,计算月销售量与销售利润.

(3)当售价定为多少元时,会获得最大利润?求出最大利润.

【答案】(1)y=-10x2+1400x-40000;(2)6750元;(3)当售价是70元时,利润最大为9000元.

【解析】

试题分析:(1)根据“销售单价每涨1元,月销售量就减少10千克”,可知:月销售量=500-(销售单价-50)×10.由此可得出售价为55元/千克时的月销售量,然后根据利润=每千克的利润×销售的数量来求出月销售利润;

(2)方法同(1)只不过将55元换成了x元,求的月销售利润变成了y;

(3)得出(2)的函数关系式后根据函数的性质即可得出函数的最值以及相应的自变量的值.

试题解析:(1)当销售单价定为每千克x元时,月销售量为:[500-(x-50)×10]千克.

每千克的销售利润是:(x-40)元,

所以月销售利润为:y=(x-40)[500-(x-50)×10]=(x-40)=-10x2+1400x-40000,

∴y与x的函数解析式为:y=-10x2+1400x-40000;

(2)∵当销售单价定为每千克55元时,则销售单价每涨(55-50)元,少销售量是(55-40)×10千克,

∴月销售量为:500-(55-50)×10=450(千克),

所以月销售利润为:(55-40)×450=6750(元);

(3)由(2)的函数可知:y=-10(x-70)2+9000

因此:当x=70时,ymax=9000元,

即:当售价是70元时,利润最大为9000元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】m2+3n﹣1的值为5,则代数式2m2+6n+5的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平面直角坐标系中,点(﹣24)关于x轴的对称点在(

A.第一象限 B.第二象限 C.第三象限 D.第四象限

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若x2+kx+81是完全平方式,则k的值应是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一元二次方程x2-6x+8=0的根的情况是(

A.有两个不相等的实数根 B.有两个相等的实数根

C.有一个实数根 D.没有实数根

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,在ABCD中,BC-AB=2cm,BC=4cm,则ABCD的周长是(

A.6cm B.12cm C.8cm D.10cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】﹣22的(  )

A. 倒数 B. 相反数 C. 绝对值 D. 平方根

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角是(

A42°138° B.都是10°

C42°138°42°10° D.以上都不对

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若x2=4|y|=9,其中x0y0,则x﹣y=

查看答案和解析>>

同步练习册答案