【题目】某商店销售一种销售成本为40元/千克的水产品,若按50元/千克销售,一个月可售出500千克,销售价每涨价1元,月销售量就减少10千克.
(1)写出月销售利润y与售价x之间的函数关系式.
(2)销售单价定为55元时,计算月销售量与销售利润.
(3)当售价定为多少元时,会获得最大利润?求出最大利润.
【答案】(1)y=-10x2+1400x-40000;(2)6750元;(3)当售价是70元时,利润最大为9000元.
【解析】
试题分析:(1)根据“销售单价每涨1元,月销售量就减少10千克”,可知:月销售量=500-(销售单价-50)×10.由此可得出售价为55元/千克时的月销售量,然后根据利润=每千克的利润×销售的数量来求出月销售利润;
(2)方法同(1)只不过将55元换成了x元,求的月销售利润变成了y;
(3)得出(2)的函数关系式后根据函数的性质即可得出函数的最值以及相应的自变量的值.
试题解析:(1)当销售单价定为每千克x元时,月销售量为:[500-(x-50)×10]千克.
每千克的销售利润是:(x-40)元,
所以月销售利润为:y=(x-40)[500-(x-50)×10]=(x-40)=-10x2+1400x-40000,
∴y与x的函数解析式为:y=-10x2+1400x-40000;
(2)∵当销售单价定为每千克55元时,则销售单价每涨(55-50)元,少销售量是(55-40)×10千克,
∴月销售量为:500-(55-50)×10=450(千克),
所以月销售利润为:(55-40)×450=6750(元);
(3)由(2)的函数可知:y=-10(x-70)2+9000
因此:当x=70时,ymax=9000元,
即:当售价是70元时,利润最大为9000元.
科目:初中数学 来源: 题型:
【题目】如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角是( )
A.42°、138° B.都是10°
C.42°、138°或42°、10° D.以上都不对
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com