精英家教网 > 初中数学 > 题目详情
精英家教网已知抛物线y=ax2-2ax与直线l:y=ax(a>0)的交点除了原点O外,还相交于另一点A.
(1)分别求出这个抛物线的顶点、点A的坐标(可用含a的式子表示);
(2)将抛物线y=ax2-2ax沿着x轴对折(翻转180°)后,得到的图象叫做“新抛物线”,则:①当a=1时,求这个“新抛物线”的解析式,并判断这个“新抛物线”的顶点是否在直线l上;②在①的条件下,“新抛物线”上是否存在一点P,使点P到直线l的距离等于线段OA的
124
?若存在,请直接写出满足条件的点P坐标;若不存在,请说明理由.
分析:(1)由y=ax2-2ax=a(x-1)2-a,即可求得这个抛物线的顶点坐标,又由y=ax2-2ax与y=ax(a>0)可得抛物线和直线的交点坐标为(0,0)、(3,3a),即可求得点A的坐标;
(2)存在,①首先求得原抛物线为y=x2-2x,可得新抛物线为y=-x2+2x,直线L:x-y=0;
②首先设P点坐标为(b,-b2+2b),则有
|b+b2-2b|
2
=
3
2
24
,即可求得b的值,则可得点P的坐标.
解答:解:(1)∵y=ax2-2ax=a(x-1)2-a,
∴抛物线的顶点坐标为(1,-a),
由y=ax2-2ax与y=ax(a>0)可得抛物线和直线的交点坐标为(0,0)、(3,3a),
∴A点坐标为(3,3a);

(2)存在一点P,使点P到直线l的距离等于线段OA的
1
24

理由如下:
①∴当a=1时,A坐标为(3,3),
∴OA=3
2

∴原抛物线为y=x2-2x,
则新抛物线为y=-x2+2x,直线L:x-y=0;
②设P点坐标为(b,-b2+2b),则有
|b+b2-2b|
2
=
3
2
24

即|b2-b|=|(b-
1
2
2-
1
4
|=
1
4

∴(b-
1
2
2=0或者(b-
1
2
2=
1
2

解得b=
1
2
或b=
1+
2
2
或b=
1-
2
2

∴P点坐标为(
1
2
3
4
)或(
1+
2
2
1+2
2
4
)或(
1-
2
2
1-2
2
4
).
点评:此题考查了二次函数的顶点坐标的求法,二次函数与一次函数的交点坐标问题,以及线段的长的求解方法等知识.此题综合性很强,难度较大,注意解题的关键是方程思想与数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-2,0),B(0,-4),C(2,-4)三点,且精英家教网与x轴的另一个交点为E.
(1)求抛物线的解析式;
(2)用配方法求抛物线的顶点D的坐标和对称轴;
(3)求四边形ABDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=ax2和直线y=kx的交点是P(-1,2),则a=
 
,k=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

2、已知抛物线y=ax2+bx+c的开口向下,顶点坐标为(2,-3),那么该抛物线有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知抛物线y=ax2+bx+c(其中b>0,c<0)的顶点P在x轴上,与y轴交于点Q,过坐标原点O,作OA⊥PQ,垂足为A,且OA=
2
,b+ac=3.
(1)求b的值;
(2)求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•广州)已知抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),顶点为B,且抛物线不经过第三象限.
(1)使用a、c表示b;
(2)判断点B所在象限,并说明理由;
(3)若直线y2=2x+m经过点B,且于该抛物线交于另一点C(
ca
,b+8
),求当x≥1时y1的取值范围.

查看答案和解析>>

同步练习册答案