相关习题
 0  349847  349855  349861  349865  349871  349873  349877  349883  349885  349891  349897  349901  349903  349907  349913  349915  349921  349925  349927  349931  349933  349937  349939  349941  349942  349943  349945  349946  349947  349949  349951  349955  349957  349961  349963  349967  349973  349975  349981  349985  349987  349991  349997  350003  350005  350011  350015  350017  350023  350027  350033  350041  366461 

科目: 来源: 题型:

【题目】解方程组和分式方程:
(1)
(2)

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系xOy中,已知第一象限内的点A在反比例函数 的图象上,第二象限内的点B在反比例函数 的图象上,连接OA、OB,若OA⊥OB,OB= OA,则k=

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,则DC=

查看答案和解析>>

科目: 来源: 题型:

【题目】已知扇形的半径为6cm,圆心角为150°,则此扇形的弧长是cm,扇形的面积是cm2(结果保留π).

查看答案和解析>>

科目: 来源: 题型:

【题目】二次函数y=ax2+bx+c(a、b、c为常数且a≠0)中的x与y的部分对应值如下表:

x

﹣3

﹣2

﹣1

0

1

2

3

4

5

y

12

5

0

﹣3

﹣4

﹣3

0

5

12

给出了结论:
1)二次函数y=ax2+bx+c有最小值,最小值为﹣3;
2)当 时,y<0;
3)二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧.则其中正确结论的个数是(
A.3
B.2
C.1
D.0

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,BC=3,AB=5.点P从点B出发,以每秒1个单位长度沿B→C→A→B的方向运动;点Q从点C出发,以每秒2个单位沿C→A→B方向的运动,到达点B后立即原速返回,若P、Q两点同时运动,相遇后同时停止,设运动时间为t秒.

(1)当t=时,点P与点Q相遇;
(2)在点P从点B到点C的运动过程中,当t为何值时,△PCQ为等腰三角形?
(3)在点Q从点B返回点A的运动过程中,设△PCQ的面积为S平方单位.
①求S与t之间的函数关系式;
②当S最大时,过点P作直线交AB于点D,将△ABC中沿直线PD折叠,使点A落在直线PC上,求折叠后的△APD与△PCQ重叠部分的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】甲、乙两地之间有一条笔直的公路L,小明从甲地出发沿公路L步行前往乙地,同时小亮从乙地出发沿公路L骑自行车前往甲地,小亮到达甲地停留一段时间,原路原速返回,追上小明后两人一起步行到乙地.设小明与甲地的距离为y1米,小亮与甲地的距离为y2米,小明与小亮之间的距离为s米,小明行走的时间为x分钟.y1、y2与x之间的函数图象如图1,s与x之间的函数图象(部分)如图2.
(1)求小亮从乙地到甲地过程中y2(米)与x(分钟)之间的函数关系式;
(2)求小亮从甲地返回到与小明相遇的过程中s(米)与x(分钟)之间的函数关系式;
(3)在图2中,补全整个过程中s(米)与x(分钟)之间的函数图象,并确定a的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,AB是⊙O的直径,C是⊙O上的一点,直线MN经过点C,过点A作直线MN的垂线,垂足为点D,且∠BAC=∠DAC.
(1)猜想直线MN与⊙O的位置关系,并说明理由;
(2)若CD=6,cos∠ACD= ,求⊙O的半径.

查看答案和解析>>

科目: 来源: 题型:

【题目】一个不透明的袋子中装有大小、质地完全相同的3只球,球上分别标有2,3,5三个数字.
(1)从这个袋子中任意摸一只球,所标数字是奇数的概率是
(2)从这个袋子中任意摸一只球,记下所标数字,不放回,再从从这个袋子中任意摸一只球,记下所标数字.将第一次记下的数字作为十位数字,第二次记下的数字作为个位数字,组成一个两位数.求所组成的两位数是5的倍数的概率.(请用“画树状图”或“列表”的方法写出过程)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,某中学为合理安排体育活动,在全校喜欢乒乓球、排球、羽毛球、足球、篮球五种球类运动的1000名学生中,随机抽取了若干名学生进行调查,了解学生最喜欢的一种球类运动,每人只能在这五种球类运动中选择一种.调查结果统计如下:

球类名称

乒乓球

排球

羽毛球

足球

篮球

人数

a

12

36

18

b


解答下列问题:
(1)本次调查中的样本容量是
(2)a= , b=
(3)试估计上述1000名学生中最喜欢羽毛球运动的人数.

查看答案和解析>>

同步练习册答案