精英家教网 > 初中物理 > 题目详情

如图所示容器中装有两种互不相溶且界限分明的液体,密度分别为ρ1、ρ2将一圆柱体放入容器中,圆柱体的密度为ρ3.静止时圆柱体的上表面到分界线的距离为l1,如图1所示.将第一个圆柱体取出,再将另一形状与体积完全相同,但用不同材料制成的圆柱体放入容器中,静止时圆柱体的上表面到分界线的距离为l2,如图2所示,求后一圆柱体密度.

解:设圆柱体的体积为V,高度为l,则
由图1可知,物体悬浮,
所以ρ3Vg=ρ1gV排12gV排2,即ρ3Vg=ρ1gV+ρ2gV,
l=l1
由图2可知,物体悬浮,
所以ρ4Vg=ρ1gV排32gV排4,即ρ4Vg=ρ1gV+ρ2gV,
把l的值代入上式可得ρ4=(ρ32)+ρ2
答:后一圆柱体密度为(ρ32)+ρ2
分析:由图1和图2可知,两次的圆柱体在两种液体中悬浮,分别根据物体的浮沉条件和阿基米德原理以及密度公式得出等式,然后进行求解即可得出后一圆柱体密度.
点评:本题考查了物体浮沉条件、密度公式和阿基米德原理的应用,关键是利用好两圆柱体体积不变这一条件.
练习册系列答案
相关习题

科目:初中物理 来源: 题型:

如图所示容器中装有两种互不相溶且界限分明的液体,密度分别为ρ1、ρ2将一圆柱体放入容器中,圆柱体的密度为ρ3.静止时圆柱体的上表面到分界线的距离为l1,如图1所示.将第一个圆柱体取出,再将另一形状与体积完全相同,但用不同材料制成的圆柱体放入容器中,静止时圆柱体的上表面到分界线的距离为l2,如图2所示,求后一圆柱体密度.

查看答案和解析>>

科目:初中物理 来源:江西省月考题 题型:计算题

如图所示容器中装有两种互不相溶且界限分明的液体,密度分别为ρ1、ρ2将一圆柱体放入容器中,圆柱体的密度为ρ3.静止时圆柱体的上表面到分界线的距离为L1,如图1所示.将第一个圆柱体取出,再将另一形状与体积完全相同,但用不同材料制成的圆柱体放入容器中,静止时圆柱体的上表面到分界线的距离为L2,如图2所示,求后一圆柱体密度。

查看答案和解析>>

科目:初中物理 来源:2011-2012学年江西省宜春市樟树二中九年级(上)第三次月考物理试卷(解析版) 题型:解答题

如图所示容器中装有两种互不相溶且界限分明的液体,密度分别为ρ1、ρ2将一圆柱体放入容器中,圆柱体的密度为ρ3.静止时圆柱体的上表面到分界线的距离为l1,如图1所示.将第一个圆柱体取出,再将另一形状与体积完全相同,但用不同材料制成的圆柱体放入容器中,静止时圆柱体的上表面到分界线的距离为l2,如图2所示,求后一圆柱体密度.

查看答案和解析>>

科目:初中物理 来源: 题型:

(10年安徽蚌埠二中)如图所示容器中装有两种互不相溶且界限分明的液体,密度分别为,将一圆柱体放入容器中,圆柱体的密度为。静止时圆柱体的上表面到分界线的距离为,如图1所示。将第一个圆柱体取出,再将另一形状与体积完全相同,但用不同材料制成的圆柱体放入容器中,静止时圆柱体的上表面到分界线的距离为,如图2所示,求后一圆柱体密度。

查看答案和解析>>

同步练习册答案