精英家教网 > 高中化学 > 题目详情
8.对燃煤烟气和汽车尾气进行脱硝、脱碳和脱硫等处理,可实现绿色环保、节能减排等目的.汽车尾气脱硝脱碳的主要原理为:2NO(g)+2CO(g)$\stackrel{催化剂}{?}$N2(g)+2CO2(g)△H=a kJ•mol-1
I、已知2NO(g)+O2(g)═2NO2(g)△H=b kJ•mol-1;CO的燃烧热△H=c kJ•mol-1.写出消除汽车尾气中NO2的污染时,NO2与CO反应的热化学方程式2NO2(g)+4CO(g)=N2(g)+4CO2(g)△H=a-b+2c kJ•mol-1
II、一定条件下,在一密闭容器中,用传感器测得该反应在不同时间的NO和CO浓度如表:
时间/s012345
c(NO)/mol•L-11.000.80.640.550.50.5
c(CO)/mol•L-13.503.303.143.053.003.00
(1)在恒容密闭容器中充入CO、NO气体,如图3图象正确且能说明反应达到平衡状态的是AD

(2)前2s内的平均反应速率υ(N2)=0.09mol/(L•s)(保留两位小数,下同);此温度下,该反应的平衡常数为0.03mol•L-1
(3)采用低温臭氧氧化脱硫脱硝技术,同时吸收SO2和NOx,获得(NH42SO4的稀溶液,
①常温条件下,此溶液的PH=5,则$\frac{c(N{{H}_{4}}^{+})}{c(N{H}_{3}•{H}_{2}O)}$=1.7×104(已知该温度下NH3•H2O的Kb=1.7×10-5

②向此溶液中再加入少量 (NH42SO4固体,$\frac{c(N{{H}_{4}}^{+})}{c(S{{O}_{4}}^{2-})}$的值将变大(填“变大”、“不变”或“变小”)
(4)设计如图1装置模拟传感器测定CO与 NO反应原理.
①铂电极为正极(填“正极”或“负极”).
②负极电极反应式为CO+O2--2e-=CO2
III、如图2所示,无摩擦、无质量的活塞1、2将反应器隔成甲、乙两部分,在25℃和101kPa下实现平衡时,各部分体积分别为V、V.此时若去掉活塞1,不引起活塞2的移动.则x=1.5,V:V=3:1.

分析 Ⅰ、已知:①2NO(g)+2CO(g)$\stackrel{催化剂}{?}$N2(g)+2CO2(g)△H=a kJ•mol-1
②2NO(g)+O2(g)═2NO2(g)△H=b kJ•mol-1
③CO(g)+0.5O2(g)=CO2(g)△H=c kJ•mol-1
根据盖斯定律①-②+2×③可得2NO2(g)+4CO(g)=N2(g)+4CO2(g);
Ⅱ、(1)化学平衡状态的特征(正逆反应速率相等,各组分含量保持不变)判定,C主要图象不符和题设要求,平均摩尔质量应为恒定量;
(2)从表可知2s内NO浓度变化量为0.36mol•L-1,则N2的浓度为0.18mol/L,再有v=$\frac{△c}{△t}$计算;平衡后四种物质平衡浓度为0.5mol•L-1、3mol•L-1、0.25mol•L-1、0.5mol•L-1,根据化学平衡常数概念列式计算;
(3)①根据水解平衡常数Kh=$\frac{c(N{H}_{3}•{H}_{2}O)c({H}^{+})}{c(N{{H}_{4}}^{+})}$=$\frac{c(N{H}_{3}•{H}_{2}O)c({H}^{+})}{c(N{{H}_{4}}^{+})}•\frac{c(O{H}^{-})}{c(O{H}^{-})}$=$\frac{{K}_{w}}{{K}_{b}}$计算;
②在(NH42SO4溶液中存在水解反应,2NH4++H2O?NH3•H2O+H+,往(NH42SO4溶液中再加入少量 (NH42SO4固体,水解平衡向正方向进行,但铵根的水解率减小,可得;
(4)①原电池的正极判断根据N元素化合价变化情况判断,氮元素化合价降低在正极发生;
②负极失电子被氧化:CO+O2--2e-=CO2
Ⅲ、如图2所示,无摩擦、无质量的活塞1、2将反应器隔成甲、乙两部分,说明为等压容器,对应2CO(g)+2NO(g)?N2(g)+2CO2(g)只要转化到一边成比例即等效,若去掉活塞1,不引起活塞2的移动,说明新平衡与原平衡等效,据此分析;

解答 解:Ⅰ、已知①2NO(g)+2CO(g)$\stackrel{催化剂}{?}$N2(g)+2CO2(g)△H=a kJ•mol-1
②2NO(g)+O2(g)=2NO2(g)△H=b kJ•mol-1
③CO(g)+0.5O2(g)=CO2(g)△H=c kJ•mol-1
根据盖斯定律①-②+2×③可得2NO2(g)+4CO(g)=N2(g)+4CO2(g))△H=a-b+2c kJ•mol-1
故答案为:2NO2(g)+4CO(g)=N2(g)+4CO2(g)△H=a-b+2c kJ•mol-1
Ⅱ、(1)A、随着反应的进行,氮气的百分量瞪大,平衡时不再变化,故A正确;
B、△H与反应的物质的量有关,故△H改变,与图象不符,故B错误;
C、混合我替的总质量不变,该反应的混合气体的总的物质的量变小,根据$\overline{M}=\frac{m}{n}$,平均相对分子质量增大,平衡时不再改变,故C错误;
D、CO作为反应物,随着反应的进行,浓度减小,平衡时保持不变,故D正确;
故选AD;
(2)从表可知2s内NO浓度变化量为0.36mol•L-1,则N2的浓度为0.18mol/L,故其速率为$\frac{0.18mol/L}{2s}$=0.09mol•L-1•min-1;平衡后四种物质平衡浓度为0.5mol•L-1、3mol•L-1、0.25mol•L-1、0.5mol•L-1,故平衡常数K=$\frac{0.{5}^{2}×0.25}{0.5×{3}^{2}}$=0.03mol•L-1
故答案为:0.09; 0.03mol•L-1
(3)①水解平衡常数Kh=$\frac{c(N{H}_{3}•{H}_{2}O)c({H}^{+})}{c(N{{H}_{4}}^{+})}$=$\frac{c(N{H}_{3}•{H}_{2}O)c({H}^{+})}{c(N{{H}_{4}}^{+})}•\frac{c(O{H}^{-})}{c(O{H}^{-})}$=$\frac{Kw}{Kb}$,pH=5,c(H+)=1×10-5,则$\frac{c(N{{H}_{4}}^{+})}{c(N{H}_{3}•{H}_{2}O)}$=$\frac{c({H}^{+})}{Kh}$=$\frac{c({H}^{+})Kb}{Kw}$=$1{0}^{-5}×\frac{1.7×1{0}^{-5}}{1×1{0}^{-14}}$=1.7×104
故答案为:1.7×104
②在(NH42SO4溶液中存在水解反应,2NH4++H2O?NH3•H2O+H+,往(NH42SO4溶液中再加入少量 (NH42SO4固体,水解平衡向正方向进行,但铵根的水解率减小,所以$\frac{c(N{{H}_{4}}^{+})}{c(S{{O}_{4}}^{2-})}$的值将变大;
故答案为:变大;
(4)①氮元素化合价降低在正极发生,pt电极为正极;
②负极失电子被氧化,CO氧化为CO2,负极电极式为:CO+O2--2e-=CO2
故答案为:正极;CO+O2--2e-=CO2
Ⅲ、如图2所示,无摩擦、无质量的活塞1、2将反应器隔成甲、乙两部分,说明为等压容器,对应2CO(g)+2NO(g)?N2(g)+2CO2(g)只要转化到一边成比例即等效,所以有
                     2CO(g)+2NO(g)?N2(g)+2CO2(g);
甲起始(mol):0.6          0              x              3
转化(mol):0.6+2x       2x              0             3-2x
乙起始(mol):1.2         1         0        0   
若去掉活塞1,不引起活塞2的移动,说明新平衡与原平衡等效,则3-2x=0,解得x=1.5mol,
则甲相等于3.6molCO和3molNO刚好是乙的3倍,所以V:V=3:1;
故答案为:1.5;3:1.

点评 本题考查了热化学方程式书写、速率计算、平衡常数计算、盐类水解、原电池工作原理及电极反应书写、等效平衡,综合性强,要求学生对基础知识的掌握扎实,计算较大,(3)、Ⅲ题目难度大.

练习册系列答案
相关习题

科目:高中化学 来源: 题型:解答题

2.常温下有0.1mol•L-1四种溶液NaOH、NH3•H2O、HCl、CH3COOH
(1)已知CH3COOH溶液的pH=3,其电离度为1%,由水电离的c(H+)=10-11mol•L-1
(2)相同pH的CH3COOH溶液和HCl溶液加水稀释,其pH变化情况如图,其中表示HCl溶液的是曲线I,a、b两点中,导电能力更强的是a.
(3)NH3•H2O溶液和HCl溶液混合,已知体积V(NH3•H2O)>V(HCl),当溶液中c(NH3•H2O)=c(NH4+)时,溶液的pH=9.25.[已知:Kb(NH3•H2O)=1.77×10-5,lg 1.77=0.25].

查看答案和解析>>

科目:高中化学 来源: 题型:解答题

3.降低大气中CO2的含量及有效地开发利用 CO2,目前工业上有一种方法是用CO2来生产燃料甲醇.为探究反应原理,现进行如下实验,在体积为1L的恒容密闭容器中,充入1mol CO2和3mol H2,一定条件下发生反应:CO2(g)+3H2(g)?CH3OH(g)+H2O(g)△H=-49.0kJ/mol.测得CO2和CH3OH(g)的浓度随时间变化如图所示.
(1)从反应开始到平衡,氢气的平均反应速率v(H2)=0.225mol/(L•min);
(2)氢气的转化率=75%;
(3)该反应的平衡常数为5.33(保留小数点后2位);
(4)下列措施中能使平衡体系中n(CH3OH)/n(CO2)增大的是C.
A.升高温度     B.充入He(g),使体系压强增大   C.再充入1mol H2

查看答案和解析>>

科目:高中化学 来源: 题型:实验题

20.碘化钠是实验室中常用的分析试剂,工业上用铁屑还原法制备NaI的流程如图所示.

请回答下列问题:
(1)判断反应①中碘是否反应完全的方法是取少量反应后的溶液于试管中,滴入几滴淀粉溶液,若溶液未变蓝,则证明碘已反应完全;反之,碘未反应完全(或取少量反应后的溶液于试管中,滴入几滴CCl4,振荡、静置,若下层液体呈无色,证明碘已反应完全;若下层液体呈紫红色,证明碘未反应完全).
(2)操作Ⅰ的名称是过滤.
(3)反应①的化学方程式为3I2+6NaOH═5NaI+NaIO3+3H2O.
(4)反应②中NaIO3被Fe单质还原为NaI,同时生成Fe(OH)3,写出该反应的化学方程式并用双线桥法表示此反应的电子转移的方向及数目
(5)在反应②中若有99g NaIO3被还原,则转移电子的物质的量为3mol.

查看答案和解析>>

科目:高中化学 来源: 题型:解答题

3.开发利用清洁能源具有广阔的开发和应用前景,可减少污染解决雾霾问题.甲醇是一种可再生的清洁能源,一定条件下用CO和H2合成CH3OH:CO(g)+2H2 (g)?CH3OH(g)△H=-105kJ•mol-1.向体积为2L的密闭容器中充入2mol CO和4mol H2,测得不同温度下容器内的压强(P:kPa)随时间(min)的变化关系如图1中Ⅰ、Ⅱ、Ⅲ曲线所示:

(1)①Ⅱ和Ⅰ相比,改变的反应条件是Ⅱ中使用催化剂.
②反应Ⅰ在6min时达到平衡,在此条件下从反应开始到达到平衡时v (CH3OH)=0.125 mol/(L.min).
③反应Ⅱ在2min时达到平衡,平衡常数K(Ⅱ)=12.在体积和温度不变的条件下,在上述反应达到平衡Ⅱ时,再往容器中加入1mol CO和3mol CH3OH后v(正)= v(逆).(填“>”“<”“=”),原因是浓度商Qc=$\frac{\frac{1.5+3}{2}}{\frac{1+0.5}{2}×0.{5}^{2}}$=12=K,可逆反应处于平衡状态.
④比较反应Ⅰ的温度(T1)和反应Ⅲ的温度(T3)的高低:T1>T3(填“>”“<”“=”),判断的理由是此反应为放热反应,降低温度,反应速率减慢,平衡向正反应方向移动.
(2)某研究所组装的CH3OH-O2燃料电池的工作原理如图2所示.
①该电池负极的电极反应式为:CH3OH-6e-+H2O=CO2↑+6H+;.
②以此电池作电源进行电解,装置如图3所示.发现溶液逐渐变浑浊并有气泡产生,其原因是Al-3e-=Al3+、Al3++3HCO3-=Al(OH)3↓+3CO2↑.(用相关的离子方程式表示).

查看答案和解析>>

科目:高中化学 来源: 题型:解答题

13.为了提高煤的利用率,人们先把煤转化为CO和H2,再将它们转化为甲醇,某实验人员在一定温度下的密闭容器中,充入一定量的H2和CO,发生反应:2H2(g)+CO(g)$\stackrel{催化}{→}$CH3OH(g),测定的部分实验数据如下:
t/s0500s1 000s
c(H2)/(mol•L-15.003.522.48
c(CO)/(mol•L-12.50
(1)在500s内用H2表示的化学反应速率为0.00296mol•L-1•s-1
(2)在1 000 s内用CO表示的化学反应速率是0.00126mol•L-1•s-1,1 000s时H2的转化率是50.4%.
(3)在500s时生成的甲醇的浓度是0.74mol•L-1

查看答案和解析>>

科目:高中化学 来源: 题型:解答题

20.甲醇是有机化工原料和优质燃料,主要应用于精细化工、塑料等领域,也是农药、医药的重要原料之一.回答下列问题:
(1)工业上可用CO2 和H2反应合成甲醇.已知25℃、101kPa 下:
H2(g)+$\frac{1}{2}$O2(g)═H2O(g)△H1=-242kJ/mol
CH3OH(g)+$\frac{3}{2}$O2(g)═CO2(g)+2H2O(g)△H2=-676kJ/mol
①写出CO2与H2反应生成CH3OH(g)与H2O(g)的热化学方程式CO2(g)+3H2(g)═CH3OH(g)+H2O(g)△H=-50 kJ/mol.下列表示该反应的能量变化的示意图中正确的是a(填字母代号).

②合成甲醇所需的H2可由下列反应制取:H2O(g)+CO(g)?H2(g)+CO2(g).某温度下该反应的平衡常数K=1.若起始时c(CO)=1mol/L,c(H2O)=2mol/L,则达到平衡时H2O的转化率为33.3%.
(2)CO和H2反应也能合成甲醇:CO(g)+2H2(g)?CH2OH(g)△H=-90.1kJ/mol.在250℃下,将一定量的CO和H2投入10L的恒容密闭容器中,各物质的浓度(mol/L)变化如表所示(前6min没有改变条件):
2min4min6min8min
CO0.070.060.060.05
H2x0.120.120.2
CH3OH0.030.040.040.05
①x=0.14,250℃时该反应的平衡常数K=46.3.
②若6~8min时只改变了一个条件,则改变的条件是加入1mol氢气,第8min时,该反应是否达到平衡状态?不是(填“是”或“不是”).
(3)甲醇在原电池上的使用,提高了燃料的利用效率,达到节能减排的目的.若用熔融的Na2CO3使作电解质、氧气作助燃剂组成的燃料电池,写出负极的电极反应式:2CH3OH-12e-+6CO32-=8CO2+4H2O.

查看答案和解析>>

科目:高中化学 来源: 题型:实验题

17.研究NO2、SO2、CO等大气污染气体的处理具有重要意义.
(1)已知:2SO2(g)+O2(g)?2SO3(g)△H=-196.6kJ•mol-1
2NO(g)+O2(g)?2NO2(g)△H=-113.0kJ•mol-1
则反应NO2(g)+SO2(g)?SO3(g)+NO(g)的△H=-41.8kJ•mol-1
(2)一定条件下,将NO2与SO2以体积比2:1置于密闭容器中发生上述反应,下列能说明反应达到平衡状态的是BD.
A.体系压强保持不变
B.混合气体颜色保持不变
C.SO3和NO的体积比保持不变
D.每消耗1molSO3的同时生成1mol NO
测得上述反应达平衡时NO2与SO2的体积比为5:1,则平衡常数K=1.8
(3)CO可用于合成甲醇,反应方程式为CO(g)+2H2(g)?CH3OH(g).CO在不同温度下的平衡转化率与压强的关系如图(1)所示.该反应△H<0(填“>”或“<”).实际生产条件控制在250℃、1.3×104kPa左右,选择此压强的理由是:在1.3×104kPa下,CO的转化率已较高,再增大压强CO的转化率提高不大,而生产成本增加得不偿失.

(4)依据燃烧的反应原理,合成的甲醇可以设计如图(2)所示的原电池装置.
①该电池工作时,OH-向负极移动(填“正”或“负”).
②该电池正极的电极反应式为O2+2H2O+4e-═OH-

查看答案和解析>>

科目:高中化学 来源: 题型:解答题

18.CO是火力发电厂释放出的主要尾气,为减少对环境污染,发电厂试图采用CO与Cl2在催化剂的作用下合成光气(COCl2).某温度下,向2L的密闭容器中投入一定量的CO和Cl2,在催化剂的作用下发生反应:CO(g)+Cl2(g)?COCl2(g)△H=a kJ/mol
反应过程中测定的部分数据如表:
t/minn (CO)/moln (Cl2)/mol
01.200.60
10.90
20.80
40.20
(1)比较各时段平均速率v(COCl2):v(0-1)> v(0-2);v(0-2)> v(1-2) (填“>”、“=”或“<”).
(2)在2min~4min间,v(Cl2正=v(Cl2 (填“>”、“=”或“<”),该温度下K=5
(3)已知X、L可分别代表温度或压强,如图表示L一定时,CO的砖化率随X的变化关系.
X代表的物理量是温度;a<0 (填“>”,“=”,“<”),依据是因为X增大时,CO的平衡转化率降低,平衡逆向移动.

查看答案和解析>>

同步练习册答案