精英家教网 > 高中化学 > 题目详情
15.使用SNCR脱硝技术的主反应为:4NH3(g)+4NO(g)+O2(g)$\stackrel{催化剂}{?}$ 4N2(g)+6H2O(g)△H副反应及773K时平衡常数如表所示:
反应△H(kJ•mol-1平衡常数(K)
4NH3 (g)+5O2 (g)?4NO (g)+6H2O (g)-905.51.1×1026mol•L-1
4NH3 (g)+4O2 (g)?2N2O (g)+6H2O (g)-1104.94.4×1028
4NH3 (g)+3O2 (g)?2N2 (g)+6H2O (g)-1269.07.1×1034L•mol-1
(1)主反应△H=-1632.5kJ•mol-1,773K时主反应平衡常数K=4.6×1043L•mol-1
(2)图1表示在密闭体系中进行实验,测定不同温度下,在相同时间内各组分的浓度.

①图中a、b、c三点,主反应速率最大的是c.
②试解释N2浓度曲线先上升后下降的原因先上升:反应还未到达平衡状态,温度越高,化学反应速率越快,单位时间内N2浓 度越大;后下降:达到平衡状态后,随着温度升高,因反应正向放热,平衡逆向移动,且随温度升高有副产物的生成,N2浓度降低.
③550K时,欲提高N2O的百分含量,应采取的措施是采用合适的催化剂.
(3)为探究碳基催化剂中Fe、Mn、Ni等元素的回收,将该催化剂溶解后得到含有Fe2+、Mn2+、Ni2+的溶液,物质的量浓度均为10-3mol•L-1.欲完全沉淀Fe2+、Mn2+(离子浓度低于1.0×10-6),应控制CO32-的物质的量浓度范围为(3.0×10-5,1.0×10-4 ).
沉淀物Ksp
FeCO33.0×10-11
MnCO32.0×10-11
NiCO31.0×10-7
(4)电化学催化净化NO是一种最新脱硝方法.原理示意图如图2,固体电解质起到传导O2-的作用.
a为外接电源的负极(填“正”、“负”).通入NO的电极反应式为2NO+4e-=N2+2O2-

分析 (1)依据副反应的热化学方程式、盖斯定律计算得到主反应的反应焓变,4NH3 (g)+3O2 (g)?2N2 (g)+6H2O (g) K3=7.1×1034L•mol-1,K32=$\frac{{c}^{4}({N}_{2}){c}^{12}({H}_{2}O)}{{c}^{8}(N{H}_{3}){c}^{6}({O}_{2})}$=(7.1×1034L•mol-12;4NH3 (g)+5O2 (g)?4NO (g)+6H2O (g)K1=$\frac{{c}^{4}(NO){c}^{6}({H}_{2}O)}{{c}^{4}(N{H}_{3}){c}^{5}({O}_{2})}$=1.1×1026mol•L-1,则主反应4NH3(g)+4NO(g)+O2(g)$\frac{\underline{\;催化剂\;}}{\;}$4N2(g)+6H2O(g);K=$\frac{{c}^{4}({N}_{2}){c}^{6}({H}_{2}O)}{{c}^{4}(N{H}_{3})c({O}_{2})}$=$\frac{{{K}_{3}}^{2}}{{K}_{1}}$;
(2)①在密闭体系中进行实验,起始投入一定量NH3、NO、O2,测定不同温度下,在相同时间内各组分的浓度变化,反应速率随温度升高增大;
②N2浓度曲线先上升后下降,是因为反应开始正向进行未达到平衡状态,氮气浓度增大,达到平衡后,反应是放热反应,升温平衡逆向进行,所以氮气浓度减小;
③550K时生成N2O的反应几乎没发生,欲提高N2O的百分含量,应是反应向副反应方向进行4NH3 (g)+4O2 (g)?2N2O (g)+6H2O (g),改变主反应反应历程,可以选择合适的催化剂是副反应发生;
(3)欲完全沉淀Fe2+、Mn2+(离子浓度低于1.0×10-6),阴阳离子比相同,溶度积常数越大,溶解性越大,结合溶度积常数比较计算此时碳酸亚铁完全生成的碳酸根离子浓度,为最小的碳酸根离子浓度,依据NiCO3 溶度积常数计算Ni2+的物质的量浓度均为10-3mol•L-1.时需要碳酸根离子的最大浓度,保证镍离子不沉淀;
(4)反应原理是利用电解吸收NO生成氮气,氮元素化合价+2价变化为0价,发生还原反应,在电解池的阴极发生还原反应,则a为外接电源的负极,固体电解质起到传导作用的是O2-

解答 解:(1)依据副反应的热化学方程式结合盖斯定律计算得到主反应的反应焓变,
③4NH3 (g)+3O2 (g)?2N2 (g)+6H2O (g) K3=7.1×1034L•mol-1
①4NH3 (g)+5O2 (g)?4NO (g)+6H2O (g)K1=1.1×1026mol•L-1
③×2-①得到主反应4NH3(g)+4NO(g)+O2(g)$\frac{\underline{\;催化剂\;}}{\;}$4N2(g)+6H2O(g)△H=-1632.5KJ/mol,
4NH3 (g)+3O2 (g)?2N2 (g)+6H2O (g) K3=7.1×1034L•mol-1,K32=$\frac{{c}^{4}({N}_{2}){c}^{12}({H}_{2}O)}{{c}^{8}(N{H}_{3}){c}^{6}({O}_{2})}$=(7.1×1034L•mol-12;4NH3 (g)+5O2 (g)?4NO (g)+6H2O (g)K1=$\frac{{c}^{4}(NO){c}^{6}({H}_{2}O)}{{c}^{4}(N{H}_{3}){c}^{5}({O}_{2})}$=1.1×1026mol•L-1,则主反应4NH3(g)+4NO(g)+O2(g)$\frac{\underline{\;催化剂\;}}{\;}$4N2(g)+6H2O(g);K=$\frac{{c}^{4}({N}_{2}){c}^{6}({H}_{2}O)}{{c}^{4}(N{H}_{3})c({O}_{2})}$=$\frac{{{K}_{3}}^{2}}{{K}_{1}}$=$\frac{(7.1×1{0}^{-34})^{2}}{1.1×1{0}^{26}}$=4.6×1043L•mol-1
故答案为:-1632.5;4.6×1043L•mol-1
(2)①影响化学反应速率的条件中增大浓度、增大压强、升高温度都会增大反应速率,其中温度升高对反应速率的影响大,abc点中c点温度大,反应速率大,
故答案为:c;
②分析图象中氮气的浓度变化可知,550K时达到最大,550K后随温度升高浓度减小,变化趋势说明在b点前反应未达到平衡状态,反应正向进行氮气浓度增大,达到平衡状态后b点后氮气浓度随温度升高减小,说明正反应是放热反应,升温平衡逆向进行,且随温度升高有副产物的生成,N2浓度降低,
故答案为:先上升:反应还未到达平衡状态,温度越高,化学反应速率越快,单位时间内N2浓 度越大;后下降:达到平衡状态后,随着温度升高,因反应正向放热,平衡逆向移动,且随温度升高有副产物的生成,N2浓度降低;
③550K时生成N2O的反应几乎没发生,欲提高N2O的百分含量,应是反应向副反应方向进行4NH3(g)+4O2(g)?2N2O(g)+6H2O (g),改变主反应反应历程,可以选择合适的催化剂是副反应发生,
故答案为:采用合适的催化剂;
(3)欲完全沉淀Fe2+、Mn2+(离子浓度低于1.0×10-6),阴阳离子比相同,溶度积常数越大,溶解性越大,结合溶度积常数比较计算此时碳酸亚铁完全生成的碳酸根离子浓度,为最小的碳酸根离子浓度=$\frac{3.0×1{0}^{-11}}{1{0}^{-6}}$=3.0×10-5mol/L,依据NiCO3 溶度积常数计算Ni2+的物质的量浓度均为10-3mol•L-1.时需要碳酸根离子的最大浓度,保证镍离子不沉淀,此时碳酸根离子浓度=$\frac{1×1{0}^{-7}}{1{0}^{-3}}$=1×10-4mol/L,欲完全沉淀Fe2+、Mn2+(离子浓度低于1.0×10-6),应控制CO32-的物质的量浓度范围为:(3.0×10-5,1.0×10-4 ),
故答案为:(3.0×10-5,1.0×10-4 );
(4)反应原理是利用电解吸收NO生成氮气,氮元素化合价+2价变化为0价,发生还原反应,在电解池的阴极发生还原反应,则a为外接电源的负极,固体电解质起到传导作用的是O2-,通入NO的电极反应式为2NO+4e-=N2+2O2-
故答案为:负;2NO+4e-=N2+2O2-

点评 本题考查了热化学方程式书写、平衡常数的计算、影响化学平衡的因素分析、电解池原理等知识点,注意图象中曲线的变化为趋势,掌握基础是解题关键,题目难度中等.

练习册系列答案
相关习题

科目:高中化学 来源: 题型:选择题

9.在酸性或碱性条件下,溶液中都能大量共存的离子组是(  )
A.Na+、K+、SO42-、CO32-B.Cu2+、K+、SO42-、NO3-
C.Na+、K+、Cl-、NO3-D.Mg2+、K+、HCO3-、Cl-

查看答案和解析>>

科目:高中化学 来源: 题型:解答题

6.I.碳和氮的化合物与人类生产、生活密切相关.
(1)有机物加氢反应中镍是常用的催化剂.但H2中一般含有微量CO会使催化剂镍中毒,
在反应过程中消除CO的理想做法是投入少量SO2,为搞清该方法对催化剂的影响,查阅资料并绘制图象如图1:


则:①不用通入O2氧化的方法除去CO的原因是避免O2与Ni反应再使其失去催化作用.
②SO2(g)+2CO(g)=S(s)+2CO2(g);△H=-270kJ/mol.
(2)汽车尾气中含大量CO和氮氧化物(NOx)等有毒气体.
①活性炭处理NO的反应:C(s)+2NO(g)?N2(g)+CO2 (g);△H=-a kJ•mol-1(a>0)若使NO更加有效的转化为无毒尾气排放,以下措施理论上可行的是b.
a.增加排气管长度                b.增大尾气排放口
c.添加合适的催化剂              d.升高排气管温度
②在排气管上添加三元催化转化装置如图3,CO能与氮氧化物(NOx)反应生成无毒尾气,其化学方程式是2xCO+2NOx$\frac{\underline{\;催化剂\;}}{\;}$2xCO2+N2
Ⅱ.氮元素和碳元素一样也存在一系列氢化物并有广泛应用.例如:NH3、N2H4、N3H5、N4H6….
(1)写出该系列氢化物的通式NnHn+2(n≥2).
(2)已知NH3为一元碱,N2H4为二元碱,N2H4在水溶液中的一级电离方程式可表示为N2H4+H2O?N2H5++OH-,试写出N2H4的二级电离方程式N2H5++H2O?N2H62++OH-
(3)已知用氨气制取尿素[CO(NH22]的反应为:2NH3(g)+CO2(g)?CO(NH22(l)+H2O(g);△H<0
某温度下,向容积为100L的密闭容器中通入4molNH3和2molCO2,该反应进行到40s时达到平衡,此时CO2的转化率为50%.该温度下此反应平衡常数K的值为2500.图2中的曲线表示该反应在前25s内的反应进程中的NH3浓度变化.若反应延续至70s,保持其它条件不变情况下,请在图中用实线画出使用催化剂时该反应的进程曲线.

查看答案和解析>>

科目:高中化学 来源: 题型:解答题

3.2013年9月,中国华北华中地区发生了严重的雾霾天气,北京、河北、河南等地的空气污染升为6级空气污染,属于重度污染.汽车尾气、燃煤废气、冬季取暖排放的CO2等都是雾霾形成的原因.
(1)汽车尾气净化的主要原理为:2NO(g)+2CO(g)$\stackrel{催化剂}{?}$N2(g)+2CO2(g)△H<0.在一定温度下,在一个体积固定的密闭容器中充入一定量的NO和CO,在t1时刻达到平衡状态.
①能判断该反应达到平衡状态的标志是CD.
A.在单位时间内生成1mol CO2的同时消耗了lmol CO
B.混合气体的密度不再改变
C.混合气体的平均相对分子质量不再改变
D.混合气体的压强不再变化
②在t2时刻,将容器的容积迅速扩大到原来的2倍,在其他条件不变的情况下,t3时刻达到新的平衡状态,之后不再改变条件.请在图中补充画出从t2到t4时刻正反应速随时间的变化曲线:
③若要同时提高该反应的速率和NO的转化率,采取的措施有增大压强、增大CO浓度.(写出2个)
(2)改变煤的利用方式可减少环境污染,通常可将水蒸气通过红热的碳得到水煤气,其反应C(g)+H2O(g)?CO(g)+H2(g)△H=+131.3kJ•mol-1
①该反应在高温下能自发进行(填“高温”或“低温”).
②煤气化过程中产生的有害气体H2S可用足量的Na2CO3溶液吸收,该反应的离子方程式为CO32-+H2S=HCO3-+HS-.[已知:Ka1(H2S)=9.1×10-8,Ka2(H2S)=1.1×10-12;Ka1(H2CO3)=4.3×10-7,Ka2(H2CO3)=5.6×10-11]
(3)已知反应:CO(g)+H2O(g)?CO2(g)+H2(g),现将不同量的CO(g)和H2O(g)分别通入到体积为2L的恒容密闭容器中进行反应,得到如下三组数据:
实验组温度/℃起始量/mol平衡量/mol达到平衡所需的时间/min
COH2OH2CO
1650421.62.46
2900210.41.63
3900abcdt
①实验1条件下平衡常数K=2.67(保留小数点后二位).
②实验3中,若平衡时,CO的转化率大于水蒸气,则a、b必须满足的关系是a<b.
③该反应的△H>0 (填“<”或“>”);若在900℃时,另做一组实验,在此容器中加入l0mol CO、5mo1H2O、2mo1CO2、5mol H2,则此时v(正)<v(逆)(填“<”、“>”或“=”).

查看答案和解析>>

科目:高中化学 来源: 题型:实验题

10.氢气作为高效、洁净的二次能源,将成为未来社会的主要能源之一.甲烷重整是一种被广泛使用的制氢工艺.
Ⅰ.甲烷水蒸气重整制氢气的主要原理:
CH4(g)+H2O(g)?CO(g)+3H2(g)△H1=+206kJ•mol-1…①
CO(g)+H2O(g)?CO2(g)+H2(g)△H2=-41kJ•mol-1…②
(1)反应①的平衡常数的表达式K=$\frac{c(CO)•{c}^{3}({H}_{2})}{c(C{H}_{4})•c({H}_{2}O)}$.
(2)有研究小组通过应用软件AsepnPlus实现了对甲烷水蒸气重整制氢系统的模拟,研究了控制水反应水碳比,在不同温度下反应器RI中操作压力变化对氢气产率的影响,其数据结果如图1所示:

①请根据图象,阐述在一定压力条件下温度与氢气产率的关系,并说明原因升高温度,主要反应是吸热反应,平衡向吸热的正反应方向移动,氢气的产率提高;
②在实际工业生产中,操作压力一般控制在2.0-2.8MPa之间,其主要原因是反应在低压下,有利氢气的产率提高,但反应速率慢,效益低,压强大,对设备材料强度要求高.
Ⅱ.甲烷二氧化碳重整
(3)近年来有科学家提出高温下利用CO2对甲烷蒸汽进行重整,既可以制氢也可以减少CO2排放缓解温室效应,其主要原理为CH4(g)+CO2(g)?2CO(g)+2H2(g),该反应的△H=+247kJ•mol-1.经研究发现该工艺与Ⅰ相比,主要问题在于反应过程中更容易形成积碳而造成催化剂失活,请用化学方程式表示形成积碳的原因CH4$\frac{\underline{\;高温\;}}{\;}$C+2H2
Ⅲ.甲烷水蒸气重整的应用
(4)甲烷水蒸气重整的一个重要应用是将甲烷水蒸气重整后的合成气作为熔融碳酸盐燃料电池的原料,其工作原理如图2:
①写出该电池的负极反应方程式H2+CO32--2e-=H2O+CO2,CO+CO32--2e-=2CO2
②该电池中可循环利用的物质有CO2、H2O;
③若该燃料电池的能量转化效率为70%,则当1g甲烷蒸汽通入电池时,理论上外电路可以产生33712C(库仑)的电量.(电子电量为1.6×10-19C)

查看答案和解析>>

科目:高中化学 来源: 题型:实验题

20.工业上可以以煤和水为原料通过一系列转化变为清洁能源氢气或工业原料甲醇.
(1)用煤制取氢气的反应是:C(s)+2H2O(g)$\frac{\underline{\;高温\;}}{\;}$ CO2(g)+2H2(g)△H>0
若已知碳的燃烧热a和氢气的燃烧热b不能(填“能”或“不能”)求出上述反应的△H.若能则求出其△H(若不能请说明理由):因为上述反应与氢气燃烧热的反应中水的状态不同.
(2)工业上也可以仅利用上述反应得到的CO2和H2进一步合成甲醇,反应方程式为:
CO2(g)+3H2(g)?CH3OH(g)+H2O(g)△H<0,
在一恒温恒容密闭容器中充入1mol CO2和3 mol H2进行上述反应.测得CO2和CH3OH(g)浓度随时间变化如图1所示.
ⅰ.该温度下的平衡常数为5.33.10min后,保持温度不变,向该密闭容器中再充入1mol CO2(g)和1mol H2O(g),则平衡正向(填“正向”、“逆向”或“不”)移动.
ⅱ.对于基元反应aA+bB?cC+dD而言,其某一时刻的瞬时速率计算公式如下:正反应速率为V=k•c(A)a•c(B)b;逆反应速率为V=k•c(C)c•c(D)d其中k、k为速率常数.求该反应进行到第10min时k:k=3:16.
(3)工业上利用水煤气合成甲醇燃料,反应为CO(g)+2H2(g)?CH3OH(g)△H<0.在一定条件下,将l mol CO和2mol H2通入密闭容器中进行反应,当改变某一外界条件(温度或压强)时,CH3OH的体积分数φ(CH3OH)变化趋势如图2所示:
①平衡时,M点CH3OH的体积分数为10%.则CO的转化率为25%.
②X轴上a点的数值比b点小(填“大”或“小”).Y轴表示温度(填“温度”或“压强”),判断的理由是随着Y值的增加,CH3OH的体积分数φ(CH3OH)减小,平衡逆向移动,故Y表示温度.

查看答案和解析>>

科目:高中化学 来源: 题型:选择题

7.下列情况没有发生蛋白质变性的是(  )
A.淀粉和淀粉酶混合后微热
B.用蘸有质量分数为75%的酒精棉花球擦皮肤
C.用紫外线光灯照射病房
D.用福尔马林浸动物标本

查看答案和解析>>

科目:高中化学 来源: 题型:填空题

4.写出下列物质在水中的电离方程式:
(1)NH3•H2ONH3•H2O?OH-+NH4+
(2)NaHSO4NaHSO4=Na++H++SO42-
(3)H2CO3H2CO3?H++HCO3-,HCO3-?H++CO32-
(4)NaHCO3NaHCO3=Na++HCO3-

查看答案和解析>>

科目:高中化学 来源: 题型:选择题

5.下列物质形成水溶液,溶液呈中性的是(  )
A.CH3COONaB.NH4ClC.KNO3D.H2S

查看答案和解析>>

同步练习册答案