精英家教网 > 高中数学 > 题目详情
设P(x,y)为圆x2+(y-1)2=1上任一点,要使不等式x+y+m≥0恒成立,则m的取值范围是    
【答案】分析:由圆的方程找出圆心坐标和半径,依题意得,只要圆上的点都在直线之上,临界情况就是直线和圆下部分相切,即圆心(0,1)到直线的距离是1,利用点到直线的距离公式得到关于m的方程,求出方程的解,根据图象判断符合题意的m的值即可得到使不等式恒成立时m的取值范围.
解答:解:由圆的方程x2+(y-1)2=1得,圆心(0,1),半径r=1
令圆x2+(y-1)2=1与直线x+y+m=0相切,
则圆心到直线的距离d=r,即=1,化简得1+m=±
即m=-1,m=--1(舍去),
结合图象可知,当m≥-1时,圆上的任一点都能使不等式x+y+m≥0恒成立.
故答案为:[-1,+∞)
点评:此题考查学生掌握不等式恒成立时所满足的条件及直线与圆相切时所满足的条件,灵活运用点到直线的距离公式化简取值,灵活运用数形结合的数学思想解决实际问题,是一道综合题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设P(x,y)为圆x2+(y-1)2=1上任一点,要使不等式x+y+m≥0恒成立,则m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设P(x,y)为圆x2+(y-1)2=1上任意一点,欲使不等式x+y+m≥0恒成立,则m的取值范围是什么?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2-4x+2y+1=0,直线l:y=kx-1.
(1)当k为何值时直线l过圆心;
(2)是否存在直线l与圆C交于A,B两点,且△ABC的面积为2?如果存在,求出直线l的方程,如果不存在,请说明理由;
(3)设P(x,y)为圆C上一动点,求
y+3x+1
的最值.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省宁德市高一(上)期末抽考数学试卷(解析版) 题型:解答题

已知圆C:x2+y2-4x+2y+1=0,直线l:y=kx-1.
(1)当k为何值时直线l过圆心;
(2)是否存在直线l与圆C交于A,B两点,且△ABC的面积为2?如果存在,求出直线l的方程,如果不存在,请说明理由;
(3)设P(x,y)为圆C上一动点,求的最值.

查看答案和解析>>

同步练习册答案