精英家教网 > 高中数学 > 题目详情
已知函数,正实数a、b、c满足f(c)<0<f(a)<f(b),若实数d是函数f(x)的一个零点,那么下列四个判断:①d<a;②d>b;③d<c;④d>c.其中可能成立的个数为   
【答案】分析:根据函数零点的存在性判断方法,结合题意先求出含有零点的区间,再判断.
解答:解:由题意:正实数a、b、c满足f(c)<0<f(a)<f(b),
则含有零点的区间可能为,(c,a)或(c,b),
∴函数f(x)的一个零点d,d<a,d<b,d>c;则①④对
故答案为:2.
点评:本题主要考查了函数零点的存在性判断方法,结合区间判断零点的大小,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源:2011年山东省实验中学高考数学一模试卷(文科)(解析版) 题型:选择题

已知函数,正实数a、b、c满足f(c)<0<f(a)<f(b).,若实数d是函数f(x)的一个零点,那么下列5个判断:①d<a;②d>b;③d<c;④c<a;⑤a<b.其中可能成立的个数为( )
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源:2012年江苏省四星高中高三数学小题训练(16)(解析版) 题型:解答题

已知函数,正实数a、b、c成公差为正数的等差数列,且满足f(a)f(b)f(c)<0,若实数d是方程f(x)=0的一个解,那么下列四个判断:①d<a;②d>b;③d<c;④d>c中,有可能成立的个数为   

查看答案和解析>>

科目:高中数学 来源:2011年四川省眉山市高考数学二模试卷(理科)(解析版) 题型:解答题

已知函数,正实数a、b、c成公差为正数的等差数列,满足f (a) f (b) f (c)<0,且实数d是方程f (x)=0的一个解.给出下列四个不等式:①d<a,②d>b,③d<c,④d>c,其中有可能成立的不等式的序号是    

查看答案和解析>>

科目:高中数学 来源:2009年广东省韶关市高考数学二模试卷(文科)(解析版) 题型:选择题

已知函数,正实数a、b、c满足f(c)<0<f(a)<f(b),若实数d是函数f(x)的一个零点,那么下列四个判断:
①d<a;②d>b;③d<c;④d>c.其中可能成立的个数为( )
A.1
B.2
C.3
D.4

查看答案和解析>>

同步练习册答案