精英家教网 > 高中数学 > 题目详情

已知其中.(1)求函数的单调区间;(2)若函数在区间内恰有两个零点,求的取值范围;

(3)当时,设函数在区间上的最大值为最小值为,记,求函数在区间上的最小值.

 

【答案】

(1)增区间:;减区间:;(2) ;(3).

【解析】

试题分析:

(Ⅰ)f′(x)=x2+(1-a)x-a=(x+1)(x-a),又a>0,

∴当x<-1时,f′(x)>0,f(x)单调递增;当-1<x<a时,f′(x)<0,f(x)单调递减;当x>a时,f′(x)>0,f(x)单调递增.

所以f(x)的单调增区间为:(-∞,-1),(a,+∞);单调减区间为:(-1,a).

(Ⅱ)由(Ⅰ)知f(x)在区间(-2,-1)内单调递增,在区间(-1,0)内单调递减,从而函数f(x)在(-2,0)内恰有两个零点当且仅当,解得

所以a的取值范围是

(Ⅲ)a=1时,,由(Ⅰ)知f(x)在[-3,-1]上单调递增,在[-1,1]上单调递减,在[1,2]上单调递增.

(1)当t∈[-3,-2]时,t+3∈[0,1],-1∈[t,t+3],f(x)在[t,-1]上单调递增,在[-1,t+3]上单调递减,因此,f(x)在[t,t+3]上的最大值M(t)=f(-1)="-" ,而最小值m(t)为f(t)与f(t+3)中的较小者.由f(t+3)-f(t)=3(t+1)(t+2)知,当t∈[-3,-2]时,f(t)≤f(t+3),故m(t)=f(t),所以g(t)=f(-1)-f(t).而f(t)在[-3,-2]上单调递增,因此f(t)≤f(-2)="-" ,g(t)在[-3,-2]上的最小值为g(-2)="-" -(-)=

(2)当t∈[-2,-1]时,t+3∈[1,2],且-1,1∈[t,t+3].下面比较f(-1),f(1),f(t),f(t+3)的大小.由f(x)在[-2,-1],[1,2]上单调递增,有f(-2)≤f(t)≤f(-1),f(1)≤f(t+3)≤f(2).又由f(1)=f(-2)=-,f(-1)=f(2)=-,从而M(t)=f(-1)=-,m(t)=f(1)=-,所以g(t)=M(t)-m(t)=

综上,函数g(t)在区间[-3,-1]上的最小值为

考点:利用导数研究函数的单调性;函数的零点;利用导数研究函数的最值。

点评:本题考查了应用导数研究函数的单调性、零点以及函数在闭区间上的最值问题,同时考查分析问题、解决问题的能力以及分类讨论的数学思想.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出如下命题:
命题p:已知函数y=f(x)=
1-x3
,则|f(a)|<2(其中f(a)表示函数y=f(x)在x=a时的函数值);
命题q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0},且A∩B=∅;
求实数a的取值范围,使命题p,q中有且只有一个为真命题.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知角α的终边经过点P(-3cos θ,4cos θ),其中θ∈(2kπ+
π
2
,2kπ+π)
(k∈Z),
(1)求角α的正弦函数值及余弦函数值;
(2)求
sin(α-π)cos(2π-α)sin(-α+
2
)
cos(π-α)sin(π-α)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•金山区一模)已知等差数列{an}满足:a1+a2n-1=2n,(n∈N*),设Sn是数列{
1an
}的前n项和,记f(n)=S2n-Sn
(1)求an;(n∈N*)
(2)比较f(n+1)与f(n)的大小;(n∈N*)
(3)如果函数g(x)=log2x-12f(n)(其中x∈[a,b])对于一切大于1的自然数n,其函数值都小于零,那么a、b应满足什么条件?

查看答案和解析>>

科目:高中数学 来源:学习周报 数学 北师大课标高一版(必修3) 2009-2010学年 第32期 总188期 北师大课标版 题型:013

下列算法:

①求和:1+2+3+…+1000;

②已知两个数求它们的商;

③已知函数定义在区间上,将区间十等分求端点及各分点处的函数值;

④已知三角形的一边长及此边上的高,求其面积.其中可能要用到循环结构的是

[  ]
A.

①②

B.

①③

C.

①④

D.

③④

查看答案和解析>>

科目:高中数学 来源:“伴你学”新课程 数学·必修3、4(人教B版) 人教B版 题型:013

下列算法:

①求和1+2+3+…+1000;

②已知两个数求它们的商;

③已知函数f(x)定义在区间[a,b]上,将区间[a,b]十等分,求端点及各分点处的函数值;

④已知三角形的三边求其面积.

其中可能要用到循环结构的是

[  ]

A.①②

B.①③

C.①④

D.③④

查看答案和解析>>

同步练习册答案