精英家教网 > 高中数学 > 题目详情
已知cosα=,求sin,cos,tan的值.

解析:sin,

cos,

tan.

答案:sin,cos,tan.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(Ⅰ)①证明两角和的余弦公式Cα+β:cos(α+β)=cosαcosβ-sinαsinβ;②由Cα+β推导两角和的正弦公式Sα+β:sin(α+β)=sinαcosβ+cosαsinβ.
(Ⅱ)已知△ABC的面积S=
1
2
AB
AC
=3
,且cosB=
3
5
,求cosC.

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)①证明两角和的余弦公式Cα+β:cos(α+β)=cosαcosβ-sinαsinβ;
②由Cα+β推导两角和的正弦公式Sα+β:sin(α+β)=sinαcosβ+cosαsinβ.
(Ⅱ)已知cosα=-
4
5
,α∈(π,
3
2
π),tanβ=-
1
3
,β∈(
π
2
,π),cos(α+β)
,求cos(α+β).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的面积S满足3≤S≤3
3
,且
AB
BC
=6,
AB
BC
的夹角为α.
(1)求α的取值范围;
(2)若函数f(α)=sin2α+2sinαcosα+3cos2α,求f(α)的最小值,并指出取得最小值时的α.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的面积S满足
3
2
≤S≤
3
2
,且
AB
BC
=3
AB
BC
的夹角为θ.
(1)求θ的取值范围;
(2)求函数f(θ)=3sin2θ+2
3
sinθ•cosθ+cos2θ
的最大值及最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)证明两角和的余弦公式Cα+β:cos(α+β)=cosαcosβ-sinαsinβ;
(2)已知△ABC的面积S=
1
2
AB
AC
=3
,且cosB=
3
5
,求cosC.

查看答案和解析>>

同步练习册答案