精英家教网 > 高中数学 > 题目详情
已知圆C1:(x-2cosθ)2+(y-2sinθ)2=1与圆C2x2+y2=1,P,Q分别为圆C1与圆C2上的动点,则|PQ|的最大值为
4
4
分析:先求出两个圆的圆心距d的值,再根据|PQ|的最大值为d加上两个圆的半径,运算求得结果.
解答:解:由题意可得,圆C1的圆心为(2cosθ,2sinθ),半径r1=1;
圆C2的圆心为(0,0),半径r2=1.
两个圆的圆心距为 d=
(2cosθ-0)2+(2sinθ-0)2
=2,
故|PQ|的最大值为d+r1+r2=2+1+1=4,
故答案为 4.
点评:本题主要考查两个圆的位置关系,两点间的距离公式,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知圆C1:(x-1)2+y2=25和圆C2:(x-4)2+(y-5)2=16
(1)若直线l1经过点P(2,-1)和圆C1的圆心,求直线l1的方程;
(2)若点P(2,-1)为圆C1的弦AB的中点,求直线AB的方程;
(3)若直线l过点A(6,0),且被圆C2截得的弦长为4
3
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C1:(x-2)2+(y-1)2=
20
3
,椭圆C2
x2
a2
+
y2
b2
=1(a>b>0)
,若C2的离心率为
2
2
,如果C1与C2相交于A,B两点,且线段AB恰为圆C1的直径,
(I)设P为圆C1上的一点,求三角形△ABP的最大面积;
(II)求直线AB与椭圆C2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C1:(x+3)2+y2=1和圆C2:(x-3)2+y2=9,动圆M同时与圆C1及圆C2外切,则动圆圆心M的轨迹方程为
x2-
y2
8
=1(x<0)
x2-
y2
8
=1(x<0)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C1:(x+2)2+y2=4及点C2(2,0),在圆C1上任取一点P,连接C2P,做线段C2P的中垂线交直线C1P于点M.
(1)当点P在圆C1上运动时,求点M的轨迹E的方程;
(2)设轨迹E与x轴交于A1,A2两点,在轨迹E上任取一点Q(x0,y0)(y0≠0),直线QA1,QA2分别交y轴于D,E两点,求证:以线段DE为直径的圆C过两个定点,并求出定点坐标.

查看答案和解析>>

科目:高中数学 来源:同步题 题型:填空题

已知圆C1:(x-2)2+(y-1)2=10与圆C2:(x+6)2+(y+3)2=50交于A、B两点,则AB所在的直线方程是(    )。

查看答案和解析>>

同步练习册答案